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Features of Intelligence
Required by
Unmanned Ground Vehicles

James S. Albus
National Institute of Standards and Technology
Gaithersburg, MD 20899

ABSTRACT

A definition of intelligence is given in terms of performance
that can be quantitatively measured. Behaviors required of
unmanned ground vehicles are described and computational
requirements for intelligent control at seven hierarchical levelsin a
military scout platoon are outlined. Metrics and measurements are
suggested for evaluating the performance of unmanned ground
vehicles. Cadlibrated data and test facilities are suggested to
facilitate the development of intelligent systems.

KEYWORDS: intelligence, intelligent systems, unmanned
ground vehicles, scout platoon, autonomous vehicles, metrics,
measures

1. DEFINITIONS

The definition of intelligence is a controversial subject.
Hardly any two persons define intelligence the same. Some
even question whether intelligence can be defined at all.
Yet, if we are to perform serious research on intelligent
systems, we must not only be able to define intelligence, we
must be able to quantitatively measure it. Thus, for the
purpose of discussion of the issues addressed in this paper,
we will define intelligence asfollows[1]:

Df: intelligence

the ability to act appropriately in an uncertain
environment

Df: appropriate action

that which maximizes the probability of success

Df: success

the achievement or maintenance of behavioral goals
Df: behavioral goal

a desired state of the environment that a behavior is
designed to achieve or maintain

This definition of intelligence addresses both biological
and machine embodiments. It admits a broad spectrum of
behaviors, from the simple to the complex. We deliberately

do not define intelligence in binary terms (i.e., this machine
isintelligent and this one is not, or this species is intelligent

and this one is not) and we do not limit our definition of

intelligence to behavior that is beyond our understanding.

Our definition includes the entire spectrum of intellectual

capabilities from that of a paramecium to that of an Einstein,

from that of a thermostat to that of the most sophisticated

computer system. We include the ability of a robot to spot-

weld an automobile body, the ability of abeeto navigatein a
field of wild flowers, a squirrel to jump from limb to limb, a
duck to land in a high wind, and a swallow to catch insects

in flight above afield of wild flowers. We include the ability

of blue jays to battle in the bushes for a nesting site, a pride
of lions to conduct a coordinated attack on a wildebeest, and

aflock of geese to migrate south for the winter. We include
a human's ability to bake a cake, play the violin, read a
book, write a poem, fight awar, or invent acomputer.

Our definition of intelligence recognizes degrees, or
levels, of intelligence. These are determined by the
following parameters: 1) the computational power and
memory capacity of the system's brain (or computer), 2) the
sophistication of the processes the system employs for
sensory processing, world modeling, behavior generation,
value judgment, and communication, and 3) the quality and
quantity of information and values the system has stored in
its memory. The measure of intelligence is success in
solving problems, anticipating the future, and acting so asto
maximize the likelihood of achieving goals. Success can be
measured by various criteria of performance (including life
or death, pain or pleasure, reliability in goal achievement,
cost in time and resources, and others.) Different levels of
intelligence produce different probabilities of success.

Our definition of intelligence aso has many
dimensions. For example, the ability to understand what is
visually perceived is qualitatively different from the ability
to comprehend what is spoken. The ability to reason about
mathematics and logic lies along a different dimension from
the ability to compose music and verse. The ability to choose
wisely involves both the ability to predict the future and the
ability to accurately assess the cost or benefit of predicted
future states. Along each of these dimensions, there exists a
continuum. Thus, the space of intelligent systems is a



multidimensional  continuum  wherein
systems occupy apoint at the origin.

non-intelligent

At aminimum, intelligence requires the ability to sense
the environment, to make decisions, and to control action.
Higher levels of intelligence may include the ability to
recognize objects and events, to represent knowledge in a
world model, and to reason about and plan for the future. In
advanced forms, intelligence provides the capacity to predict
the future, to perceive and understand what is going on in
the world, to choose wisely, and to act successfully under a
large variety of circumstances so as to survive, prosper, and
replicate in a complex, competitive, and often hostile
environment.

From the viewpoint of control theory, intelligence
might be defined as a knowledgeable "helmsman of
behavior.” Intelligence is a phenomenon which emerges as a
result of the integration of knowledge and feedback into a
sensory-interactive, goal-directed control system that can
make plans and generate effective purposeful action to
achieve goals.

From the viewpoint of psychology or biology,
intelligence might be defined as a behavioral strategy that
gives each individual a means for maximizing the likelihood
of success in achieving its goals in an uncertain and often
hostile environment. Intelligence results from the integration
of perception, reason, emotion, and behavior in a sensing,
perceiving, knowing, feeling, caring, planning, and acting
system that can formulate and achieve goals.

2. REQUIREMENTS FOR UNMANNED
GROUND VEHICLES

The features of intelligence required by an Unmanned
Ground Vehicle (UGV) depends on many factors, such as:

What doesthe UGV haveto do?

Does it simply wander through a lab looking for soft
drink cans?

Doesit have to operate outside? Travel long distances?
Perform difficult tasks?

How complex and uncertain isthe environment?

Where is it expected to operate? On well marked
roads? On unmarked roads? Gravel or dirt roads? Roads
grown up with weeds and brush? Off roads? In tall grass
and weeds? In woods? Does it have to cross streams? Are
there bridges or fords available? What kind of maps are
available? How accurate are they? How recent?

How dynamic and hostile is the environment?

Are there moving obstacles? What are the lighting
conditions? Are obstacles located above or below ground

level? Are there other agents competing for the goal? Are
there enemy agents with deadly weapons?

What are costs, risks, and benefits?
What are the stakes? Life or death? Win or lose?
What are goals?

Attack? Defend? Escape? Detect and track enemy
targets? Remain undetected?

What aretasks?

Pick up an object? Use atool? Dig aditch? Cross a
stream? Establish an observation post? Discover an enemy
vehicle? Analyze enemy behavior? Identify a face in a
crowd?

What sensors are available?

CCD cameras? FLIRs? LADARs? Radars? Sonars?
Inertial? GPS? Beacons? Reflectors? Tactile? Force?
Encoders?

What actuators are to be controlled?

Manipulators? Grippers? Power train?
Wheels? Steering? Brakes? Switches?

Legs or

How much isknown apriori?

Maps? Lists of objects and their attributes? State of
objects? Behavior of objects? Rules?

What skillsand abilitiesare required?

Locomotion? Manipulation? Perception?
Communication? Reasoning? Speech understanding?
Written text understanding? In what languages?

The above questions are so open ended that it is futile
to try to address all these issues simultaneously. To focus
our efforts, we select an example of a problem that is
difficult enough to be challenging, well defined enough to
quantitatively measure performance, easy enough that it
probably can be achieved using available technology, and
useful enough that it is worth spending time and resources to
solve it. The problem that we have selected it that of an
unmanned ground vehicle for military scout operations.

3. A SCOUT PLATOON EXAMPLE

To illustrate the types of issues that will be addressed,
an example is given below of a seven level hierarchy for a
scout platoon attached to a battalion. The specific numbers
and functions described in this example are illustrative only.
They are meant only to illustrate how the generic structure
and function of an intelligent system might be instantiated in
the 4D/RCS architecture [2] designed for the Army’s Demo
Il experimental unmanned ground vehicle program. [3]



Exact numbers for the actual system are still under

development.
Level 7 -- Battalion

An armored battalion is a unit that consists of a group
of M1 or Bradley companies and a scout platoon. A
computational node at level 7 of the 4D/RCS architecture
corresponds to a battalion headquarters unit, consisting of a
battalion commander, several company commanders, a scout
platoon leader, and support staff. (In principle, any or all of
these could be humans or intelligent agent software
processes. In practice, they are all humans.)

The battalion headquarters unit plans activities and
allocates resources for the armored companies and the scout
platoon attached to the battalion. Incoming orders to the
battalion are decomposed by the battalion commander into
assignments for the companies and the scout platoon.
Resources and assets are allocated to each subordinate unit,
and a schedule is generated for each unit to maneuver and
carry out assigned operations. Together, these assignments,
allocations, and schedules comprise aplan. The plan may be
devised by the battalion commander alone, or in consultation
with his subordinate unit leaders. The battalion level
planning process may consider the exposure of each unit's
movements to enemy observation, and the traversability of
roads and cross-country routes. The battalion commander
typically defines the rules of engagement for the units under
his command and works with his unit leaders to develop a
schedule that meets the objectives of the mission orders
given to the battalion. In the 4-D/RCS battalion node, plans
are computed for a period of about 24 hours(h) and
recomputed at least once every 2 h, or more often if
necessary. Desired positions for each of the subordinate
units at about 2 h intervals are computed.

The 4D/RCS architecture provides a surrogate battalion
node in each individual vehicle to perform the functions of
the battalion headquarters unit when the vehicle is not in
direct communication with its chain of command. The
surrogate node plans activities for the vehicle on a battalion
level time scale and estimates what platoon and section level
operations should be executed to follow that plan. The
surrogate battalion node considers the exposure of scout
platoon operations to enemy observations, and the
traversability of roads and cross-country routes.

In the surrogate battalion node in each vehicle, the 4-
D/RCS world model maintains a knowledge database
containing a copy of the battalion level knowledge database
that is relevant to that vehicle. It contains names and
attributes of friendly and enemy forces and of the force
levels required to engage them. Maps have a range of 1000
km (i.e. more than the distance that a vehicle is likely to
travel in a 24 h day at a Demo 111 speed of 36 km per hour
(10 m/s)) with a resolution of about 400 m. Maps describe
the terrain and location of friendly and enemy forces (to the

extent that they are known), and roads, bridges, towns, and
obstacles such as mountains, rivers, and woods. Battalion
level maps may be updated from intelligence reports.

4-D/RCS sensory processing in the surrogate battalion
node integrates information about the movement of forces,
the level of supplies, and the operational status of all the
units in the battalion, plus intelligence about enemy units in
the area of concern to the company. This information is
used to update maps and lists in the knowledge database so
asto keep it accurate and current.

The surrogate battalion node also contains value
judgment functions (e.g., calculating the risk of casualties)
that enable the battalion commander to evaluate the cost and
benefit of various tactical options. To the extent that the
knowledge, skills, and abilities in the surrogate battalion
node is identical with that in the real battalion node, the
surrogate battalion node will make the same decisions as the
real battalion headquarters node.

An operator interface allows human operators (either
on-site or remotely) to visualize information such as the
deployment and movement of forces, the availability of
ammunition, and the overall situation within the scope of
attention of the battalion commander.  The operator can
intervene to change priorities, alter tactics, or redirect the
allocation of resources.

Output from the battalion level through the company
commanders and scout platoon leader comprise input
commands to the company/platoon level. Armor company
commanders and the scout platoon leader are expected to
issue commands to their respective units, monitor how well
their units are following the battalion plan, and make
adjustments as necessary to keep on plan. New output
commands may be issued at any time, and typically consist
of tasks expected to require about 2 h to complete.

L evel 6—Platoon

A scout platoon is a unit that typically consists of ten
HMMWVs or Bradley vehicles organized into one or more
sections.  For the Demo |1l project, a scout platoon will
consist of six manned HMMWVs and four UGVs. A 4-
D/RCS node at the Platoon level corresponds to a scout
platoon headquarters unit. It consists of a platoon
commander plus his/her section leaders. (Any of these could
be humans or intelligent agent software processes, in any
combination.) The platoon commander and section leaders
plan activities and allocate resources for the sections in the
platoon. Platoon orders are decomposed into job
assignments for each section. Resources are allocated, and a
schedule of activities is generated for each section.
Movements are planned relative to major terrain features and
other sections within the platoon. Inter-section formations
are selected on the basis of tactica goals, steath
requirements, and other priorities. At the platoon level,
plans are computed for a period of about 2 h into the future,



and replanning is done about every 10 min, or more often if
necessary. Section waypoints about 10 min apart are
computed.

The surrogate platoon node in each vehicle performs
the functions of the platoon headquarters unit when the
vehicle is not in direct communication with the chain of
command. It plans activities for the vehicle on a platoon
level time scale and estimates what vehicle level maneuvers
should be executed in order to follow that plan. Movements
are planned relative to major terrain features and other
vehicles within the platoon.

At the platoon level, the 4-D/RCS world model
symbolic database contains names and attributes of targets,
and the weapons and ammunition necessary to attack them.
Maps with a range of about 100 km (i.e. more than the
distance a platoon is likely to travel in 2 h) and resolution of
about 40 m describe the location of objectives, and routing
between them.  Sensory processing integrates intelligence
about the location and status of friendly and enemy forces.
Value judgment evaluates tactical options for achieving
section objectives. An operator interface allows human
operators to visualize the status of operations and the
movement of vehicles within the section formation.
Operators can intervene to change priorities and reorder the
plan of operations. Section |leaders are expected to sequence
commands to their respective sections, monitor how well
their sections are following the platoon plan, and make
adjustments as necessary to keep on plan. The output from
the platoon level through the section leaders are commands
issued to sections to perform maneuvers and engage enemy
units in particular sectors of the battlefield. Output
commands may be issued at any time, but typically are
planned to change only about once every 5 min.

L evel 5—Section

A scout section is a unit that consists of a group of
individual scout vehicles such as HMMWVs and UGVs. A
4-D/RCS node at the section level corresponds to a section
leader and vehicle commanders (humans or intelligent
software agents). The section leader assigns duties to the
vehicles in his section and coordinates the vehicle
commanders in scheduling cooperative activities of the
vehicles within a section. Orders are decomposed into
assignments for each vehicle, and a schedule is developed
for each vehicle to maneuver in formation within assigned
corridors taking advantage of local terrain features and
avoiding obstacles. Plans are developed to conduct
coordinated maneuvers and to perform reconnaissance,
surveillance, or target acquisition functions. At the section
level, plans are computed for about 10 min into the future,
and replanning is done about every 1 min, or more often if
necessary. Vehicle waypoints about 1 min apart are
computed.

The surrogate section node in each UGV performs the
functions of the section command unit when the UGV is not
in direct communication with the section commander. The
surrogate node plans activities for the UGV on a section
level time scale and estimates what vehicle level maneuvers
should be executed in order to follow that plan.

At the section level, the 4-D/RCS world model
symbolic database contains names, coordinates, and other
attributes of other vehicles within the section, other sections,
and potential enemy targets. Maps with a range of about 10
km and a resolution of about 30 m are typical. Maps at the
section level describe the location of vehicles, targets,
landmarks, and local terrain features such as buildings,
roads, woods, fields, streams, fences, ponds, etc. Sensory
processing determines the position of landmarks and terrain
features, and tracks the motion of groups of vehicles and
targets. Vaue judgment evaluates plans and computes cost,
risk, and payoff of various alternatives. An operator
interface allows human operators to visualize the status of
the battlefield within the scope of the section, or to intervene
to change priorities and reorder the sequence of operations
or selection of targets. Vehicle commanders issue commands
to their respective vehicles, monitor how well plans are
being followed, and make adjustments as necessary to keep
on plan. Output commands to individual vehicles to engage
targets or maneuver relative to landmarks or other vehicles
may be issued at any time, but on average are planned for
tasks that last about 1 min.

Level 4—Individual vehicle

The vehicle is a unit that consists of a group of
subsystems, such as locomotion, attention, communication,
and mission package. A manned scout vehicle may have a
driver, vehicle commander, and alookout. Thus, a4-D/RCS
node at the vehicle level corresponds to a vehicle
commander plus subsystem planners and executors. The
vehicle commander assigns jobs to subsystems and
schedules the activities of all the subsystems within the
vehicle. A schedule of waypoints is developed by the
locomotion subsystem to avoid obstacles, maintain position
relative to nearby vehicles, and achieve desired vehicle
heading and speed along the desired path on roads or cross-
country. A schedule of tracking activities is generated for
the attention subsystem to track obstacles, other vehicles,
and targets. A schedule of activities is generated for the
mission package and the communication subsystems.
Waypoints and task activities about 5 s apart out to a
planning horizon of 1 min are replanned every 5 s, or more
oftenif necessary.

At the vehicle level, the world model symbolic
database contains names (identifiers) and attributes of
objects -- for example, the size, shape, and surface
characteristics of roads, ground cover, or objects such as
rocks, trees, bushes, mud, and water. Maps are generated
from on-board sensors with a range of about 500 m and



resolution of 4 meters. These maps are registered and
overlaid with 40 meter resolution data from Section level
maps. Maps represent object positions (relative to the
vehicle) and dimensions of road surfaces, buildings, trees,
craters, and ditches. Sensory processing measures object
dimensions and distances, and computes relative motion.
Value judgment evaluates tragjectory planning and sensor
dwell time sequences. An operator interface allows a human
operator to visualize the status of operations of the vehicle,
and to intervene to change priorities or steer the vehicle
through difficult situations. Subsystem controller executors
seguence commands to subsystems, monitor how well plans
are being followed and modify parameters as necessary to
keep on plan. Output commands to subsystems may be
issued at any time, but typically are planned to change only
about onceevery 5s.

Level 3—Subsystem level

Each subsystem node is a unit consisting of a controller
for a group of related Primitive level systems such as
Primitive mobility, Gaze control, Communication, and
Mission package sub-subsystems. A 4-D/RCS node at the
Subsystem Level assigns jobs to each of its Primitive sub-
subsystems and coordinates the activities among them. A
schedule of Primitive mobility waypoints and Primitive
mobility actionsis developed to avoid obstacles. A schedule
of pointing commands is generated for aiming cameras and
sensors. A schedule of messages is generated for
communications, and a schedule of actions is developed for
operating the mission package sub-subsystems. The
Primitive mobility way points are about 500 ms apart out to
a planning horizon of about 5 sin the future. A new planis
generated about every 500 ms.

At the Subsystem level, the world model symbolic
database contains names and attributes of environmental
features such as road edges, holes, obstacles, ditches, and
targets. Vehicle centered maps with a range of 50 meters
and resolution of 40 cm are generated using data from range
sensors. These maps represent the shape and location of
terrain features and obstacle boundaries. The Demo Il
LADAR and stereo cameras measure position and range (out
to about 50 m) of surfaces in the environment. Sensory
processing computes surface properties such as dimensions,
area, orientation, texture, and motion. Value judgment
supports planning of steering and aiming computations, and
evaluates sensor data quality. An operator interface allowsa
human operator to visualize the state of the vehicle, or to
intervene to change mode or interrupt the sequence of
operations. Subsystem executors compute at a 5 Hz clock
rate. They sequence commands to primitive systems,
monitor how well plans are being followed, and modify
parameters as necessary to keep on plan. Output commands
to Primitive sub-subsystems may be issued at any 200 ms
interval, but typically are planned to change on average
about once every 500 ms.

Level 2— Primitive level

Each node at the primitive level isaunit consisting of a
group of controllers that plan and execute velocities and
accelerations to optimize dynamic performance of
components such as steering, braking, acceleration, gear
shift, camera pointing, and weapon loading and pointing,
taking into consideration dynamical interaction between
mass, stiffness, force, and time. Communication messages
are encoded into words and strings of symbols. Velocity and
acceleration set points are planned every 50 ms out to a
planning horizon of 500 ms.

The world model symbolic database contains names
and attributes of state variables and features such as target
trajectories and edges of objects. Maps are generated from
camera data. Five meter maps have a resolution of about 4
cm. Driving plans can be represented by predicted tire
tracks on the map, and visual attention plans by predicted
fixation pointsin the visual field.

Sensory processing computes linear image features
such as occluding edges, boundaries, and vertices and
detects strings of events. Value judgment cost functions
support dynamic trajectory optimization. An operator
interface allows a human operator to visualize the state of
each controller, and to intervene to change mode or override
velocities. Primitive level executors keep track of how well
plans are being followed, and modify parameters as
necessary to keep within tolerance. Primitive executors
compute at a 20 Hz clock rate. Output commands are issued
to the Servo level to adjust set points for vehicle steering,
velocity, and accel eration or for pointing sensors or weapons
platforms. Output commands are issued every 50 ms.

Level 1—Servo level

Each node at the servo level is a unit consisting of a
group of controllers that plan and execute actuator motions
and forces, and generate discrete outputs.  Communication
message bit streams are produced. The servo level
transforms commands from component to actuator
coordinates and computes motion or torque commands for
each actuator. Desired forces, velocities, and discrete
outputs are planned for 20 ms intervals out to a planning
horizon of 50 ms.

The world model symbolic database contains values of
state variables such as actuator positions, velocities, and
forces, pressure sensor readings, position of switches, and
gear shift settings. Sensory processing detects events, and
scales and filters data from individual sensors that measure
position, velocity, force, torque, and pressure. Sensory
processing also computes pixel attributes in images such as
spatial and temporal gradients, stereo disparity, range, color,
and image flow. An operator interface allows a human
operator to visualize the state of the machine, or to intervene
to change mode, set switches, or jog individual actuators.
Executors servo actuators and motors to follow planned



trajectories. Position, velocity, or force servoing may be
implemented, and in various combinations. Servo executors
compute at a 200 Hz clock rate. Motion output commands
to power amplifiers specify desired actuator torque or power
every 5 ms. Discrete output commands produce switch
closures and activate relays and solenoids.

The above example illustrates how the 4-D/RCS
multilevel hierarchical architecture assigns different
responsibilities and duties to various levels of the hierarchy
with different range and resolution in time and space at each
level. At each level, sensory data is processed, entities are
recognized, world model representations are maintained, and
tasks are decomposed into parallel and sequential subtasks,
to be performed by cooperating sets of agents. At each
level, feedback from sensors reactively closes a control loop
allowing each agent to respond and react to unexpected
events.

At each level, there is a characteristic range and
resolution in space and time, a characteristic bandwidth and
response time, and a characteristic planning horizon and
level of detail in plans. The 4-D/RCS architecture thus
organi zes the planning of behavior, the control of action, and
the focusing of computational resources such that functional
processes at each level have a limited amount of
responsibility and a manageable level of complexity.

4. DEMO Il CONTROL HIERARCHY

Figure 1 is a high-level block diagram of the first five
levels in the 4-D/RCS architecture for Demo Ill. On the
right, Behavior Generation modules decompose high level
mission commands into low level actions. The text beside
the Planner and Executor at each level indicates the planning
horizon, replanning rate, and reaction latency, and the rate at
which new commands are typically generated at each level.
Each planner has aworld model simulator that is appropriate
for the problems encountered at itslevel.

In the center of Figure 1, each map as a range and
resolution that is appropriate for path planning at its level.
At each level, there are symbolic data structures and
segmented images with |abeled regions that describe entities,
events, and situations that are relevant to decisions that must
be made at that level. On the left is a sensory processing
hierarchy that extracts information from the sensory data
stream that is needed to keep the world model knowledge
database current and accurate.

At the bottom of Figure 1 are actuators that act on the
world and sensors that measure phenomena in the world.
The Demo Il vehicles will have a variety of sensors
including a laser range imager (LADAR), stereo CCD
(charge coupled device) cameras, stereo forward looking
infra red (FLIR) devices, a color CCD, a vegetation

penetrating radar, GPS (Global Positioning System), an
inertial navigation package, actuator feedback sensors, and a
variety of internal sensors for measuring parameters such as
engine temperature, speed, vibration, oil pressure, and fuel
level. The vehicle also will carry a Reconnaissance,
Surveillance, and Target Acquisition (RSTA) mission
package that will include long-range cameras and FLIRs, a
laser range finder, and an acoustic package.

In Figure 1, the bottom (Servo) level has no map
representation. The Servo level deals with actuator
dynamics and reacts to sensory feedback from actuator
sensors. The Primitive level map has range of 5 m with
resolution of 4 cm. This enables the vehicle to make small
path corrections to avoid bumps and ruts during the 500 ms
planning horizon of the Primitive level. The Primitive level
also uses accel erometer data to control vehicle dynamics and
prevent roll-over during high speed driving.

The Subsystem level map has range of 50 m with
resolution of 40 cm. This map is used to plan about 5 sinto
the future to find a path that avoids obstacles and provides a
smooth and efficient ride. The Vehicle level map has a
range of 500 m with resolution of 4 m. This map is used to
plan paths about 1 min into the future taking into account
terrain features such as roads, bushes, gullies, or tree lines.
The Section level map has a range of 5000 m with resolution
of about 40 m. This map is used to plan about 10 m into the
future to accomplish tactical behaviors. Higher level maps
(not shown in Figure 1) are used to plan section and platoon
missions lasting about 2 and 24 h respectively. These are
derived from military maps and intelligence provided by the
digital battlefield database.

4D/RCS planners are designed to generate new plans
well before current plans become obsolete. Thus, action can
always take place in the context of a recent plan, and
feedback through the executors can close reactive control
loops using recently selected control parameters. To meet
the demands of Demo 111, the 4D/RCS architecture specifies
that replanning should occur within about one-tenth of the
planning horizon at each level (e.g., replanning at the
Vehiclelevel will occur about every 5s.)

Executors can react to sensory feedback even faster
(e.g., reaction at the Vehicle level will occur within 500 ms).
If the Executor senses an error between its output
CommandGoal and the predicted state (status from the
subordinate BG Planner) at the GoalTime, it may react by
modifying the commanded action so as to cope with that
error. This closes a feedback |oop through the Executor at
that level within the specified reaction latency.
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The type of Executor reaction depends on the size and
nature of the detected error. If the error is small, the
Executor may simply modify its CommandedAction in a
manner designed to reduce the error. For example, if the
status reported from the subordinate planner indicates that
the vehicle is going to arrive at the goal point late, the
Executor might modify its CommandedAction to speed up
or delete some low priority activities. However, if the error
is out of range, the Executor may select a stored emergency
plan from an exception handler, substitute it for the current
plan, and modify its CommandedAction and CommandGoal
to its subordinate planner appropriately. For example, an
event such as the discovery of an unexpected obstacle in the
AM planned path (generated by the Vehicle Planner) may
cause the AM planner to make a plan that deviates
significantly from its commanded goal. In this case, the
Vehicle level Executor may modify its CommandedAction
in a manner designed to buy time for the Vehicle level
Planner to generate a new AM plan. For example, it may
command the AM level to reduce speed or stop and direct
AM driving cameras or RSTA sensors to collect information
about the obstacle while a new AM plan is being generated
by the Vehicle level planner. All of this Executor response
should take place within the 500 ms reaction latency of the
Vehicle level Executor.

Typically, evoking an emergency plan will cause the
Executor to request its Planner to immediately begin a new
replanning cycle. Asshown in Figure 1, the period required
for replanning at the Vehicle level is5s. The replanning
period at the AM level is 0.5s. Thus, the emergency plan
evoked by the Vehicle level Executor can handle the
problem of what the AM level should plan to do over the
next 5 swhile the Vehicle level planner generates anew AM
plan out to its 1 min planning horizon.

5.  GENERIC BEHAVIORS OF SCOUT
VEHICLES

Navigate from A to B

Point A may be several km from point B. What kind of
roads are available? How much traffic will be present? A
scout vehicle may be required to stay off of roads, to
maneuver through hilly fields and woods, and cope with
fences, washes, and streams.

Avoid obstacles

The simplest obstacles are those that stick up from flat
ground and are not obscured by foliage. The most difficult
are ditches that are obscured by foliage. It isimportant to be
able to distinguish grass and weeds that the vehicle can drive
through from grass and weeds that conceal obstacles. In
some cases, the only way to tell the difference is to drive
slowly and stop when the vehicle encounters stiff resistance,

or when the front wheels drop over the edge of a ditch, or
sink into the mud.

Compute terrain attributes and classify terrain
features

The first requirement is to map the terrain geometry
and topology. The second is compute attributes such as
color, texture, slope, size, and shape of regions of terrain.
The third is to compare attributes of terrain regions with
class attributes so as to classify terrain regions as road, dirt,
grass, rocks, brush, trees, and bogs.

Drive autonomously

Driving autonomously covers a wide range of
situations. Driving on an empty freeway is quite different
from driving in downtown Istanbul. Driving with traffic on
a freeway requires the ability to recognize lane markings,
detect and track other vehicles, detect and avoid obstaclesin
the roadway, and obey road signs.

Driving at normal human speeds on narrow roads and
cross country is more difficult. Road edges may be poorly
defined and lane markings often do not exist. There may be
bumps or ditches that will damage the vehicle if struck at
high speeds.

Autonomous driving in suburban or downtown streets
requires the ability to detect and predict the behavior of
pedestrians, other vehicles, to read road signs, and respond
to traffic signals, including hand signals from humans.

In driving cross country, there is no guarantee that a
chosen path is even feasible. There may be hidden obstacles
such as ditches, streams, fences, hills, brush, or woods that
are impassable. The vehicle must be able to back up, and try
alternate routes when the planned path is blocked.

Classify landmarks, objects, places, and situations

It is easy to get lost. GPS is not always available.
Critical path waypoints may not appear on a map, or may be
incorrectly represented. The unexpected appearance of an
enemy may require immediate action. The ability to
recognize a likely spot for an enemy sniper in time to take
evasive action may be critical to survival.

Recognize and track other vehicles, avoid collisions

On-coming traffic on narrow roads is a major problem.
One must drive very close to oncoming vehicles to stay on
the road. One must estimate whether the oncoming vehicle
isin its own lane on its own side of the road, and whether
there is room on the road for two vehiclesto safely pass. To
do that one must detect the road edges at a great distance and
measure the relative position of the on-coming vehicle
between the road edges. Thereis very little margin for error
in space or time.



Predict behavior of pedestrians and other vehicles
in traffic

Driving in traffic requires the self vehicle to not only
detect, but to predict where pedestrians and other vehicles
will be in the future. For example, on a two lane road, on-
coming traffic may consist of one vehicle passing another.
The self vehicle must predict whether the on-coming vehicle
in the self vehicle lane will return to its own side before a
head-on collision occurs. On a one lane road, it may be
necessary for the self vehicle to pull over and let an on-
coming vehicle pass, or wait for the on-coming vehicle to
pull over so that the self vehicle can pass. On a narrow
mountain road, it may be necessary to back up to a place
whereit is wide enough for two vehicles to pass each other.

L earn from experience and from human instructors

Adjust behavior to situation and priorities. Use reward
and punishment from human instructors to learn skills and
behaviors.  Use experience from multiple simulated
scenarios to learn from experience.

6. METRICSAND MEASURES

A metric is a unit of measure. Examples include the
meter, the second, the kilogram, the volt, Plank’s constant,
and Avogadro’s number.

Measurements are made by comparing something
against the unit of measure. A measurement can be made of
the length of the coastline of the British Isles, the height of
the Eiffel Tower, the mass of the Queen Mary, the length of
a day, or the charge on an electron. There are many
parameters related to measurement including accuracy,
precision, resolution, observability, and uncertainty.

What is it about intelligent systems that can be
measured? If an intelligent system is defined as a system
with the ability to act appropriately in an uncertain
environment, then we can measure the appropriateness of its
behavior. And, if appropriate behavior is defined as that
which increases the likelihood of achieving a goal, then the
ability of a system to achieve goals in an uncertain
environment is a measure of intelligence.

At least three things are required to measure the ability
of a system to achieve goals. First, we need to define the
goals and set criteria for achieving them. Second, we need
to provide an environment in which to make the
measurements. Third, we need to define a procedure for
scoring performance that takes into account the difficulty of
the goals, and the complexity and uncertainty of the
environment

What kinds of measurements can be used to measure
performance? One possibility is to develop one or more
benchmark tests, and measure speed, accuracy, efficiency,

level of difficulty, and cost. These measurements can then
be weighted for importance and summed to provide an
overall score.

Another approach is to devise competitions wherein
different intelligent systems can compete against each other
for a score. Competitions can involve direct physical
interactions such as in football or tennis, measurements of
time as in skiing or bobsleding, or competitions that consider
both style and difficulty as in ice skating, diving, and
gymnastics. Again, performance measurements can be
weighted for importance and summed to provide a score.

What kind of metric can be used to measure the
performance of an intelligent systems? One possible metric
is the performance of a human being. Another possible
metric is the performance of a standard baseline system. In
either case, the performance of the intelligent system under
test can be compared with the performance of a human being
(or baseline system) under similar conditions. The
difference in performance, the level of difficulty of the test,
and the weighting for importance of the test all combine to
give ascore.

M easures of performance can be devised for subsystem
performance, individual system performance, or group or
team performance. For example, for subsystems, benchmark
tests can be devised to measure the performance of sensory
processing algorithms, world model predictors, or behavior
generation planners. One might measure the difference
between predictions and observations, or the difference
between plans and actions. Benchmark tests can also be
devised to measure the accuracy of knowledge about the
world. For example, one can measure the difference
between perceived terrain geometry derived from sensors
and ground truth from calibrated test courses. One can
measure the latency between requesting and receiving
information about the world. Individual system performance
can be measured and scored against standard tasks that are
typically required of human scout vehicles. Similarly, team
performance can be measured and scored in war games
wherein opposing forces are tested in battle fighting
scenarios.

What isneeded?

Calibrated test facilities are needed to test the
performance of sensors and systems in the field under
realistic conditions. High fidelity simulation facilities are
needed to generate repeatable test data for software
debugging and testing. Data from calibrated sensors, mixed
with a known noise, and accompanied by ground truth are
needed to test sensory processing and world modeling
algorithms.  World model data with values assighed to
entities and events is needed to test behavior generation
planning and control algorithms.

Large scale test and training facilities are needed to test
performance of systems in large scale operations and to



develop tactics and training for integration of autonomous
systems with manned forces. A wide variety of benchmark
tests and competitions are needed to test intelligent system
performance under a wide variety of environmental
conditions. A rigorous regimen of testing, debugging, and
reliability engineering will be needed before intelligent
systems become robust enough to operate reliably under a
wide variety of operational conditions.
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A Standard Test Course for Urban Search and Rescue Robots
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ABSTRACT

One approach to measuring the performance of intelligent systems
is to develop standardized or reproducible tests. These tests may
be in a simulated environment or in a physical test course. The
National Institute of Standards and Technology is developing a test
course for evaluating the performance of mobile autonomous
robots operating in an urban search and rescue mission.  Thetest
course is designed to simulate a collapsed building structure at
various levels of fidelity. The course will be used in robotic
competitions, such as the American Association for Artifica
Intelligence (AAAI) Mobile Robot Competition and the RoboCup
Rescue. Designed to be highly reconfigurable and to accommodate
a variety of sensing and navigation capabilities, this course may
serve as a prototype for further development of performance
testing environments. The design of the test course brings to light
several chalenges in evauating performance of intelligent
systems, such as the distinction between “mind” and “body” and
the accommodation of high-level interactions between the robot
and humans. We discuss the design criteria for the test course and
the evaluation methods that are being planned.

KEYWORDS: performance metrics, autonomous robots, mobile
robots, urban search and rescue

1. INTRODUCTION

The Intelligent Systems Division of the National
Institute of Standards and Technology is
researching how to measure the performance of
intelligent systems. One approach being
investigated is the use of test courses for
evaluating autonomous mobile robots operating in
an urban search and rescue scenario. Urban
search and rescue is an excellent candidate for
deploying robots, since it is an extremey
hazardous task. Urban Search and Rescue
(USAR) refers to rescue activities in collapsed
building or man-made structures after a
catastrophic event, such as an earthquake or a
bombing. Japan has an initiative, based on the
RoboCup robots, that focuses on multi-agent

approaches to the ssimulation and management of
major urban disasters [1]. The real-world utility
and manifold complexities inherent in this domain
make it attractive as a “chalenge’ problem for the
mobile autonomous robots community. For a
description of the issues pertaining to intelligent
robots for search and rescue, see[2].

Figures 1 and 2 illustrate the type of
environment that a rescuer has to confront with a
collapsed building.  There is totally unstructured
rubble, which may be unstable and contain many
hazards. Victims locations and conditions must
be established quickly.  Every passing minute
reduces the chances of saving a victim.

This type of environment stresses the
mobility, sensing, and planning capabilities of
autonomous systems.  The robots must be able to
crawl over rubble, through very narrow openings,
climb stairs or ramps, and be aware of the
possibility of collapses of building sections. The
sensors are confronted with a dense, variable, and
very rich set of inputs. The robot has to ascertain
how best to navigate through the area, avoiding
hazards, such as unstable piles of rubble or holes,
yet maximizing the coverage. The robot also has
to be able to detect victims and ideally, determine
their condition and location.  The robot has to
make careful decisions, planning its path and
strategy, and taking into account the time
constraints.

A near-term measure of success for robotsin a
search and rescue mission would be to scout a
structure, map its significant openings, obstacles,
and hazards, and locate victims. The robots
would communicate with victims, leaving them



with an emergency kit that contains a radio, water,
and other supplies, and transmit a map, including
victim locations and conditions, to human
supervisors. Humans would then plan the best
means of rescuing the victims, given the
augmented situational awareness.

Search and rescue missions are not amenable
to teleoperation due to the fact that most of the
radio frequencies are reserved by emergency
management agencies. Obstructions and
occlusions also diminish the effectiveness of radio
transmissions. Tethers are not typically practical
in the cluttered environment in which these robots
must operate.

2. URBAN SEARCH AND RESCUE ASA ROBOTIC
CHALLENGE

A search and rescue mission is extremely
challenging and dangerous for human experts.
This is a highly unstructured and dynamic
environment, where the mission is time critical.
Very little a priori information about the
environment or building may exist. If any exists,
it will amost certainly be obsolete, due to the
collapse.

Urban Search and Rescwe is therefore
atractive as a misson framework in which to
measure intelligence of autonomous robots.  The
high degree of variability and unpredictability
demand high adaptation and sophisticated
decision-making skills from the robots. Robots
will need to quickly and continually assess the
situation, both in terms of their own mobility and
of the likelihood of locating more victims. USAR
missions are amenable to cooperation, which can
be considered another higher-level manifestation
of intelligence. We propose that any robot or
team of robots that is able to successfully and
efficiently carry out USAR missions would be
considered intelligent by most standards.

In the following sections, we will briefly
discuss how USAR missions tax specific
components of an intelligent system.

Figure 1. Partially Collapsed Building from
Turkey Earthquake

Figure 2. Totally Collapsed Building from
Turkey Earthquake

2.1 MOBILITY

As can be seen from Figures 1 and 2, the mobility
requirements for search and rescue robots are
challenging. They must be able to crawl over
piles of rubble, up and down stairs and steep
ramps, through extremely small openings, and
take advantage of pipes, tubes, and other
unconventional routes. The surfaces that they
must traverse may be composed of a variety of
materials, including carpeting, concrete blocks,
wood, and other construction material. The
surfaces may aso be highly unstable. The robot
may destabilize the area if it is too heavy or if it
bumps some of the rubble. There may be gaps,



holes, sharp drop-offs, and discontinuities in the
surfaces that the robot traverses.

2.2 SENSING

In order to be able to explore an USAR site and
successfully navigate in this environment, the
robot’'s sensing and perception must be highly
sophisticated.  Lighting will be variable and may
be atogether missing.  Surface geometry and
materials may absorb emitted signas, such as
acoustic, or they may reflect them. For truly
robust perception, the robots should emulate
human levels of vision.

The presence of victims may be manifested
through a variety of signals. The stimuli that the
robots have to be prepared to process include

Acoustic — victims may be calling out,
moaning softly, knocking on walls, or
otherwise generating sounds. There will be
other noises in the environment due to shifting
materials or coming from other USAR
entities.

Thermal — a body will emit a thermal
signature. There may be other sources of heat,
such as radiators or hot water.

Visual — a multiplicity of visual recognition
capabilities, based on geometric, color,
textural, and motion characteristics, will be
exercised. Recognizing human
characteristics, such as limbs, color of skin,
clothing is important. Motion of humans,
such as waving, must be detected. Confusing
visua cues may come from wallpaper,
upholstery or curtain material, strewn
clothing, and moving objects, such as curtains
blown by a breeze.

2.3 KNOWLEDGE REPRESENTATION

In order to support the sophisticated planning and
decison-making that is required, the robot must
be able to leverage a rich knowledge base. This
entails both a priori expertise or knowledge, such
as how to characterize the traversability of a
particular area, as well as gained information,
such as a map that is built up as it explores. It

must develop rich three-dimensional spatial maps
that contain areas it or other robots have and
haven't yet seen, victim and hazard locations, and
potential quick exit routes. The maps from
several robots may need to be shared and merged.

A vaiety of types of knowledge will be
required in order to successfully accomplish
search and rescue tasks. Higher-level
knowledge, which may be symbolic, includes
representations of what a “victim” is.  Thisisa
multi-facetted definition, which includes the many
manifestations that imply a victim's presence.

2.4 PLANNING

An individua robot must be able to plan how to
best cover the areas it has been assigned. The
time-critical nature of its work must be taken into
account in its planning. It may need to trade off
between delving deeper into a structure to find
more victims and finding a shortcut back to its
human supervisors to report on the victims it has
already found.

2.5 AUTONOMY

As mentioned above, it is not currently practical
to assume that the robots will be in constant
communication  with  human  supervisors.
Therefore, the robots must be able to operate
autonomously, making and updating their plans
independently. In some circumstances, there
may be limited-bandwidth communications
available. In this case, the robots may be able to
operate under a mixed-initiative mode, where they
have high-level interactions with humans. The
communications should be akin to those that a
human search and rescue worker may have with
his or her supervisor. It definitely would not be of
ateleoperative nature.

2.6 COLLABORATION

Search and rescue missions seem ideally suited
for deploying multiple robots in order to
maximize coverage. An initiad strategy for
splitting up the area amongst the robots may be
devised. Once they start executing this plan, they
will revise and adapt their trajectories based on



the conditions that they encounter. Information
sharing between the robots can improve their
efficiency. For example, if a robot detects that a
particular passageway that others may need to use
is blocked, it would communicate that to its peers.
The robots should therefore collaborate and
cooperate as they jointly perform the mission.
They may be centrally or decentrally controlled.
The robots themselves may al have the same
capability, or they may be heterogeneous,
meaning that they have different characteristics.
Heterogeneous robot teams may apply the
marsupial  approach, where a larger robot
transports smaller ones to their work areas and
performs a supervisory function.

3. M EASURING THE PERFORMANCE OF USAR
RoBOTS

We have described briefly the requirements for
autonomous urban search and rescue robots. We
will now discuss approaches to testing their
capabilities in achieving a USAR mission.

The approach being taken by the upcoming
USAR robot competitions that will use the NIST
test course is based on a point system. The goal
of the robots is to maximize the number of
victims and hazards located, while minimizing the
amount of time to do so and the disruption of the
test course.

Specifically, the AAAI Mobile Robot competition
[1] will use Olympic-style scoring. Each judge
will have a certain number of points that can be
awarded based on their measuring certain
quantitative and qualitative metrics. Robots
receive points for

Number of victims located

Number of hazards detected

Mapping of victim and hazard locations
Staying within time limits

Dropping off a package to victims
representing first aid, aradio, or food and
water

Quality of communications with humans
Tolerance of communications dropout

They lose points for

Causing damage to the environment, victims,
or themselves (e.g., destabilizing a structure)

Failing to exit within time limits

In certain sections of the test course, robots
are alowed to have high-level communications
with humans. These communications must be
made visible to the judges. Metrics for evaluating
the quality of the communications include
"commands' per minute and/or bandwidth used.
Fewer commands per minute and less bandwidth
per minute receive better scores.  Tolerance of
communications disruption is an important
capability and will be given greater difficulty
weighting. A team may request that the judges
simulate communication disruptions at any point
in order that the robots demonstrate how to
recover. Examples of recovery would be to move
to a location where there is better chance of
communication, making decisions autonomously
instead of consulting humans, or utilizing
companion robots to relay the information to the
humans.

For teams consisting of multiple robots, the
advantage of cooperating or interacting robot
must be demonstrated. This can be ether in
performing the task better, or performing the task
more economically. Multi-robot teams should
have a time speedup that is greater than linear, or
may be able to perform the tasks with less overall
power consumption or cost. The scoring will
factor in the number of robots, types of robots,
types or mixture of sensors, etc., in determining
the performance of ateam.

The RoboCup Rescue competition, sponsored by
Robot World Cup Initiative, takes an evaluation
benchmarking approach. Initidly, there are 3
benchmark tasks. The current tasks are victim
search, victim rescue, and a combination of victim
search and rescue. Additional ones will be added
as the competition and participants evolve. The
RoboCup Rescue includes a simulation
infrastructure in which teams can compete, as
well as the use of the NIST test course.



Their evauation metrics are till  under
development. Examples of criteria that have been
published on their web site[4] include:

Recovery rate, expressed as percentage of
victims identified versus number under the
debris.

Accuracy rate, computed as the number of
correctly identified victims divided by the
total number of identified victims.

Operational loading, which is the number of
operations that a human has to perform in
order to enable to robots to perform their
tasks.

If rescuing victims, the total time it takes to
rescue al victims.

Total damage caused to victims in attempting
to rescue them.

4, THE TEST COURSE DESIGN

The test course which NIST designed for the
AAAI Mobile Robot Competition was designed
with three distinct areas of increasing
verisimilitude and difficulty. Overall, the courseis
meant to represent several of the sensing,
navigation, and mapping challenges that exist in a
real USAR situation.  As discussed above, these
are challenges that correlate well with general
characteristics desirable in mobile, autonomous
robots that may operate in other types of missions.
In the design of the course, tradeoffs were made
between realism and reproducible and controlled
conditions. In order to be able to evauate the
performance of robots in specific skill areas,
certain portions of the course may look unredlistic
or too simplified. This idealization is necessary
in order to abstract the essential elements being
exercised, such as a the ability to deal with a
particular sensing challenge.

Given the controlled conditions that the test
course provides, it is possible to have multiple
robots or teams face the identical course and have
their performances compared. This should yield

valuable information about what approaches to
robotic sensing, planning, and world modeling
work best under certain circumstances.

The course is highly modular, alowing for
reconfiguration before and during a competition.
Judges may swap wall panels that are highly
reflective for some that are fabric-covered, for
example, or victims may be relocated. This
reconfigurability can serve to avoid having robot
teams “game’ the course, i.e, program their
robots to have capabilities tailored to the course
they’'ve seen previously. The reconfigurability
can serve to provide more realism as well. A
route that the robot used previously may become
blocked, forcing the robot to have to find an
aternative way.

The three areas of the course are described
below. Note that the use of color in the names of
the section is for labeling purposes only and does
not mean that the courses are primarily colored in
their namesake color. A representative
schematic of the test course is shown in Figure 3,
at the end of this paper.

4.1 YELLOW COURSE

Given the fact that participating teams, at least
initially, will primarily be from universities that
may not have access to new agile robotic
platforms, one design requirement was to have an
area within the course where the mobility
challenges are minimal.  We cal this area the
“Yellow course.”  The floor of the yellow course
isflat and of uniform material. Passageways are
wide enough to permit large robots, up to about 1
meter diameter, to pass easly.

Yet the Yellow course allows teams with
sophisticated perception and planning to exercise
their robots capabilities. Some sensing
challenges are as difficult in this section as in the
others. There will be highly reflective and highly
absorbent material on walls. Certain wall panels
will be clear Plexiglas, whereas others will be
covered in brightly patterned wallpaper. Some
areas may be dimly lit or accessible only from one



direction. Victims will be represented in all
modalities (i.e., acousticaly, visualy, through
motion, thermally, etc.) and may be hidden from
view under furnishings or in closed areas.

4.2 ORANGE COURSE

The Orange course is of intermediate difficulty.
A second story is introduced, and there are routes
that only smaller robots may pass through. The
robots may have to climb stairs or aramp in order
to reach victims. Fooring materials of various
kinds, such as carpeting, tile, and rubber, are
introduced. Hazards, such as holes in the floor,
exist. In order to be effective, the robot will have
to plan in a three-dimensional space. Larger
robots will be able to navigate through some
portions of this course, but not all.

4.3 RED COURSE

The Red course poses the most redistic
representation of a collapsed structure.  We do
not anticipate that any of the contestants will be
able to successfully complete the red course in the
first or perhaps even second years. However, this
section provides a performance goal for the teams
to strive for.  In the Red section, piles of rubble
abound, lighting is minimal or non-existent, and
passageways are very narrow. The course is
highly three-dimensional, from a mapping
perspective.  Not only are there two floors, but
the rubble piles that the robot has to traverse may
need to be mapped as well.  Passageways under
the rubble or through pipes may have to be used
by the robots to reach certain areas or to get closer
to victims.  There are some portions of this
course that can be traversed by the larger class of
robots, but they would not be able to reach most
of the victims. Larger robots would be best suited
in marsupia configurationsin this area.

5. CONCLUSION

An Urban Search and Rescue application for
autonomous mobile robots poses severd
challenges that can be met only by highly
intelligent systems. The variability, risk, and
urgency inherent in USAR missions makes this a
good framework in which to begin measuring

performance in controlled and reproducible
situations. We believe that the test course we are
developing can serve to elucidate performance
measures for overal systems, as wel as for
components of intelligent systems.
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ABSTRACT

The USF team in the 2000 AAAL Mobile Robot Com-
petition had the most extensive experience with the NIST
Standard Test Bed for USAR. Based on those experiences,
the team reports on the utility of the test bed, and makes
over 20 specific recommendutions on both scoving compe-
titions and on future improvements to the test bed.

1 INTRODUCTION

A teamn of three operators and two robots from the Univer-
sity of South Florida (USF) tested the NIST standard test
bed for urban search and rescue {USAR) as part of the 2000
AAAL Mobile Robot Competition LSAR event. The test
bed consisted of three sections, each providing a different
level of difficulty in order te accommeodate most competi-
tors (see Fig. 1). The casiest section, Yellow, contained
mainly hallways, blinds, and openings to search through,
The course could be traversed by a Nomad type robot, The
intermediare Orange Section provided more chatlenge with
the addition of a second level that was reachable by stairs
or ramp. Other challenges included those found in the yel-
low as well as some added doors. The Red Section was
intended to be the most difficult. It contained piles of rub-
ble and dropped floorboards that represented & pancake-like
structure. The Orange and Red sections clearly required
hardware that was capable of traveling such spaces.

Iz addition to USF, three other teams entered the AAAI
competition’s USAR event: Kansas State, Swarthmore Col-
lege, and University of Arkansas. The Kansas State team
dropped out due to hardware faitures on site. The Swarth-
more and Arkansas teams fielded Nomad scout types of
robots that operated only in the Yellow Section. The per-
formance of each team is unclear as the judges did not
record how many victims were found and how many vie-
tims were missed. At the time of publication of this paper,

Figure 1: Overview of the NIST USAR arena.

the awards for the event were under protest. Swarthmore
had a single robot which atternpted to eater a room, per-
form a panoramic visual scan for possible victims, mark
the location on & mup, and then enter another room and so
on. At the conclusion of their aliotted time, the robot was
retrieved and the contents of the map was made available
10 the judges. They entered one room successfully and it
is believed they identified up to two surface victims. The
Arkansas team used two Nomad scout type robots; how-
ever, each robot was physically placed in a room, and the
team was allowed to repeatedly move and reset the robots as
needed. The Arkansas ream found at least one victim, and
communicated this by repeatedly ramming the mannequin.

The USF tean used two ourdoor robots: 1} a RW1
ATRY with sonar, video, and a miniature uncooled FLIR
and 2} a customized RWI Urban with a black and white
carnera, color camera, and sonars. This was intended to be
a marsupial pair, but the transport mechanism for the team
was still under construction at the time of the competition.
The USF tcam used a mixed-initiative or adjustable auton-
oaty approach: cach platform was teleoperated for purposes
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of navigation but ran a scries of software vision agents for
autopomous victim detection: motion, skin color, distine-
tive color, and thermal region. The user interface displayed
the extraction results from each applicable agent and high-
lighted in color whenever the agent found a candidate. A
fitth software agent ran on the ATRY which fused the out-
put of the four agents, compensating for the physical scpa-
ration between the video and FLIR cameras. It beeped the
aperator when it had sufficient conlidence in the presence
of a victim, but the beeping had to be turned off due to a
high nunber of false positives generated by the audience.
The ATRV found an average of 3.75 victims per each of the
four runs recorded, while the Urban found an average of
4.67 victims. A fifth run was not recorded and no dala is
available.

Figure 2: The USF USAR robot team, Fontana (ATRV) and
Klink (Utbuan} {named after two women Star Trek writers).

In addition te participating in the competition (both a
preliminary and a final round), the USF team hosted three
complete exhibition runs as part of the AAAL Robot Exhi-
bition Program and did numerous other partial exhibitions
for the news media at the request of AA A The other tcams
did not exhibit. As such, the USE team had the most experi-
ence with the most diffiendt scetions of the test bed and can
clain: to represent user expertise.

This paper discusses the NIST test bed from the USF
experience, and makes recommendations on scoring, im-
proving the test bed, and staging a more USAR-relevam
event at RoboCup Rescue in 2001,

2 ASSESSMENT OF THE THREE SEC-
TIONS

The NIST test bed is an excellent step between a research
laberatory and the rigors of the field. For exampie, USF hag
a USAR test bed (Fig. 3}, but it is somewhere between the
Yellow and Orange sections mn difficulty and cannot pro-

vide the large scale of the NIST test bed. One advantage
is that the test bed sections can be made hurder as needed.
An important contribution that should not be overlooked is
that the test bed appeared to motivate researchers we talked
to: it was neither too hard nor too trivial. This is quite an
accomplishment in itself.

Figure 3: The USF USAR testbed, a mock-up of a de-
stroyed bedroon.

2.1 Yellow

The USF team did not compete or exhibit in the Yellow
Section, entering only for about 1 hour of practicing col-
laborative telcoperation. Qur assessment was that the sec-
tion was far too much of an office navigation domain- the
over-turned chair in one of the rooms was the only real sur-
prise. Only one room had a door and neither Swarthmore
nor Arkansas reached it. The arena was at about the level
of complexity seen in the Office Navigation Bvent thread of
the AAA] Robot Competition in the mid-1990s.

2.2 Orange

The Orange Section consisted of a muze plus a second story
connected by a ramp and stairs. Unlike the Yellow Section,
the doorways into the Orange and Red Scctions had cross-
members crowning the doorway at about 4 teet high. This
added some feel of confined space. The USF rohots entered
a very conlmed maze of corridors to find a surface viclim.
The Urban served as peint man, cxploring first, then guiding
the ATRV il it [pund something requiring confirmation or
IR sensing. The maze had hanging Venctian blinds in the
passage way, and the Lirban almost got the cord tangled in
her fipper.

The Orange Section also had two forms of entry in the
main search area after the robots had navigated the maze.
One entry was through the X made by cross-bracing the
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second story. The Urban could navigate under the cross-
bracing, but the ATRV could not. The second form of entry
was theough a door on hinges. The Urbuan pushed the door
open for the ATRV to enter the main search space (Fig. 4).
The Urban attempted to climb the stairs, but the first step
was too high for the design. (A Matilda style robot also
atternpted to climb the stairs but could not either.) It went
to the ranp and climbed to the second story.

Figure 4: The Urban holds the door for the ATRV in the
Orange Section.

The USF robot was able to avoid negative obstacles (a
stairwell and uncovered HVAC ducting in the floor of the
second story) to find victims on the second story (Fig. 53
The medified Urban actually flipped its upper camera onto
the HVAC hole and peered inside the duct. This shows the
utility of having multiple sensors and in differcnt locations.

The QOrange Sectiov is also to be conunended for pro-
viding seme attributes of 3D or volumetric search. For ex-
ample, an arm was dangling down from the second story
and should have been visible [rom the first floor. Note that
the dangling arm posed a classic challenge between naviga-
tion and mission. The mission motivates the robot or res-
cuer to attempt to get closer and triage the victim, while the
navigational layout prevents the rescuer from approaching
without significantly altering course, and even backtracking
to {ind a path.

2.3 Red

The Red Section at first appeared harder (Fig. 6), however,
in practice it was easter for the ATRV than the Orange Sce-
tion due to more open space. The floor was made up of
tarps and rocks on plywood. The ATRV and Urbans werc
built for such terrain. The Red Section contained two layers
of pancaking, with significant rubble, chicken wire, pallets,
and pipes creating navigation hazards for the Urban. Only
about 30%% of the area was not accessible to the larger ATRV
due to the large open space.

Figure 3: Close up of victim lymg on the second foor of
the Orange Section.

One nice attribute of the Red Section is that it lends
itself to boohy-traps. The pancake layers were easily mod-
ified between mns o create 4 secondary collapse when the
brban climbed to the top. Using current technology, the Ur-
ban operator and/or software agents could not see any signs
that the structure was unstable.

Figure 6: Overview of the Red Section.

3 RECOMMENDATIONS ON SCORING

The AAAL Competition did not ase any metric scores for
their USAR event, relying entirely on a panel of four judges,
nong of whom had any USAR experience. The AAAL Com-
petition had published meirics prior to the competition that
were 0 be used in scoring,[3] but did not use those met-
rics on sitc and the scoring was subjective. The published
metrics appeared 10 be a good {irst start (with owr reser-
vations given below) and no reason was given why AAA]
abandoned them.

1. Use quantitative scoring, at least as a basis for the com-

262



petition. The scores might be modified by a qualitative
assessment of the Al involved, but there should be a
significait numerica} aspect to the s¢oring,

. Distribute victims in samec proportions as FEMA
statistics given in FEMA publication USFA/NFA-
RS1-SM 1992 and award points accordingly. Detect-
ing a surface victim and an entombed victim require
much different sensing and intelligence,

Surface 56%
Lightly trapped 3%
Trapped in void spaces | 15%
Entombed 5%

. Hawve a mechanism for unambiguously confirming that
the victims identified were identified. It was not clear
to the audience when a victim had been correctly de-
tected or when the robot had reported a false positive.
Perhaps an electronic scoreboard showing the number
of false positives and false negatives (missed victims)
could be displayed and updated during the competi-
tion. {Swarthmore used beeping and USF flashed the
headlights. The judges appeared to accept thas if there
was a victim in the general direction ¢f the robot’s sen-
sors at the time of the announced detection that a vic-
tite had been found. In the case of USE, only one judge
took time during the competition look at the technical
rescue display workstation, which provided both the
sensor data and the fused display, to confirm what the
robot was seeing.)

. Poings for the detection of a victim should also depend
on the time at which the technical rescue crew is in-
formed of the discovery and the accuracy of the lo-
cation, either in terms of absolute location or a nav-
igable path for workers to reach the victim. Robots
which overcome inevitable communications problems
by creating a relay of “comms-bots™ or returning to lo-
cations where broadcasting worked are t¢ be rewarded.
(The Swarthmore robot beeped when it thought it
found a victim, buot in terms of ruly communicating
that information to rescue wotkers, it stored the loca-
tion of all suspected victims until the competition was
ended. In practice, if the robot had been damaged, the
data would have been lost. Also, the map was not com-
pared quantitatively to the ground truth.)

. Contact with the victuns should be prohibited unless
the robot js carrying a biometric device that requites
contact with the victim. In that case, the robot shouid
penatized or eliminated from competition if contact is
too hard or otherwise uncontrolled. (The Arkansas
robots repeatedly struck the surface victim it had de-
tected.)

10.

. Fewer points should be awarded for finding a discon-

pected body part {and identifying it as such) than for
finding a surviver.

. Require the robots to exit from the same entry void

that they used for entry. This is a strict requirement for
hurnan rescue workers in the S, intended to facilitate
accounting for all resources, (The AAAI Competition
permitted exiting from anywhere on the grounds that
the robot may need to find a clear spot to communicate
its results.)

. Have all competitors start in the same place in the

watm zong, and do not permit them to be carried by
human operators inside the hot zone. The exception
is if the robot has wo be carried and inserted in an
above grade void from the outside. (Swarthmore and
Arkansas manuaily placed their robots in the yellow
section, with Arkansas actually placing their robots
within specific rooms in the yellow section.)

. Do not permit human operators to enter the hot zone

and reset or move robots during the competition.
(Askansas team members repeatedly entered the hot
Zone 10 reboot emant robots and to physically move
robots to new rooms to explore.)

Have multiple runs, perhaps a best of three rounds ap-
proach used by AUVSL (NIST “booby-trapped™ the
Red Section after the AAAI Preliminary Round, mak-
ing it extremely easy to create a secondary collapse.
This was done to illustrate the dangers and difficul-
ties of USAR. However, if the AAAI rules had been
followed, this would have resulted in a significant de-
duction of points from the USF team, and quite a
different score between runs. The difficulty of the
courses should be fixed for the competition events, and
changed perhaps only for any exhibitions. )

It should be clear from the above recommendations

that a guantitative scoring systemn which truly provides a
“level piaying field” is going 1o be hard to consiruct. Unlike
RobaCup, where the domain is a game with accepted rutes
and scoring mechanisms, USAR is more open. In order
to facilitate the relevance of the competition to the USAR
community, we recommend that scoring mechanisms be de-
rived in conjunction with USAR. professionals outside of
the robotics commmunity and with roboticists who are trained
in USAR. We propose thatf a rules committee for RoboCup
Rescue physical agent be established and include at least
one representative from NIST, NILUSR, and one member of
the research community who had worked and published in
USAR.
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4 RECOMMENDATIONS FOR IMPROV-
ING THE NIST TESTBED

The NIST testbed was intended to be an intermediate step
between a research laboratory and a real collapsed build-
ing. The three sections appeared to be partitioned based on
navigability, rather than as representative cases of severity
of building collapses or perceptual chalienges. For exam-
ple, the bugic motivation for the Yellow versus the Orange
and Red Sections appeared to be to engage researchers with
traditional indoor robot platforms (e.g., Nomads, RW] B se-
ries, Pioneers, and so on}. An alternative strategy might be
to consider each section more realistically, where the Yel-
low Section would be a structurally unsound, bur largely
navigable, apartment building, the Orange Section might be
an office building in mixed mode collapse such as many of
the buildings in the 1995 Hanshin-Awaji earthquake, and
the Red Section might be a pancake collapse such as seen
in the front of the Murrow building at the Oklahoma City
bombing. This approach would permit traditional indoor
robot platforms to navigate, but require advances in de-
tectior of unfriendly terrain such as throw rugs or carpet,
doors, etc.

4.1 For All Sections

in addition to the suggestions made above, we offer some
possible improvements to the test bed:

1. Create void spaces in each section more typical of
USAR (Fig. 7). In particidar, there were no lean-to and
V void spaces in any of the 3 sections. The red section
did have some light pancaking. Victims In even the
Yellow Section should be placed behind furniture and
occluded by fallen furnituce or even sheet-rock or por-
tions of the ceiling.

Figure 7: Infrared images of a lightly trapped, void trapped,
and entombed victim.

2. Put tarps and high powered lights (*beams of sun-
light”} over portions of all courses to create significant
changes in lighting conditions, most especially dark-
ness. As it stands now, the testbed is a poor test of the
utility of infra-red.

3. Enries were all doors at grade. Many voids are ac-
tuatly above grade, irregular, and have been knocked

in the wall, even in buitdings that have not collapsed.
Each section should have one or more above grade en-
tiy voids from the “outside™. This will support the tesi-
ing of concepts for automating the reconnaissance and
deciding how to deploy resources, as per the rescue
and recovery of lightly trapped vietims, use of recon-
naissance results to locate lightly trapped victims, and
searching void spaces after hazard removal phases of a
structural cotlapse rescue.[4]

4. Each section should contain more human effects. For
example, the Yellow and Orange Sections should have
throw mgs or the tloors, fatlen debris such as mag-
azines, books, bills, toys, etc. Otherwise, the Yel-
low Section is actually easier than the Office Naviga-
tion thread in the AAA] competitions during the mid-
1966s.

5. Bach section should contain real doors with door
knobs or at least the commercial code handles tor dis-
abled access. The doors in the Yellow and Orange sec-
tion were both easily opened panels. (USF was able
te easily identify the swinging door in the Orange Sec-
tion and use the Urban to open the door for the ATRY
to pass through. None of the other teams got to the
room with the door in the Yellow Section). All rooms
in any section should have doors and some of those
doors should be off their hinges or locked. This will
test the advances in object recognition, reasoning, and
manipulation.

6. If possible, victims should produce a more realistic
heat profile than a heating pad. This is needed for de-
tection and to test advances in assessment of the con-
text of the victim thow much they are covered, etc.).

4.2 For the Orange and Red Sections

1. Cover everything with dust to simulate the cinder
block and sheet-rock dust that commonly covers ey-
erything in a building collapse. Vietirs who are alive
often move cnough to inadvertently shake off some
of this dust, making color detection a very important
component of victim detection. {USF used a “distine-
tive color detector’ as one of their four vision agents.
The distinctive color agent looked for regions of color
that were different than the average value. This ap-
peared to work during the competition for the Red Sec-
tion, which was less colorful (no wallpaper, etc.), but
there wasn’t enough data to draw any statistical con-
clusions.)

2. Make the surfaces uneven. All the surfaces were level
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in their major axis; even the ramp in the Orange Sec-
tion was flat, not canted to one side.

3. Use real cinder blocks. The USF Lirban was able to
move the faux cinder blocks on the ramp in the Orange
Section rather than navigate around (Fig. 8).

Figure 8: The Urban has pushed the cinder block around
rather than traversed over it.

4, Make a “box maze” for entry 1o introduce more con-
fined space. Rescue workers who are certified for con-
fined space rescue use a series of plywood boxes which
can be connected together to form long, dark, confined
mazes. The mazes are easily reconfigured. A similar
box maze could be constructed from the lightweight
pancling material.

5. The terrain of both sections was still fairly easy com-
pared to the field, and dry. Perhaps as robot platforms
evolve, the courses should contain water.

5 OTHER SUGGESTIONS

The testhed is primarily intended to be a standard course for
experimentation. The AAA] Competition did not especiaily
further experimentation, as that the competition judges col-
lected no metric data. However, the AAAT Competition per-
formed a valuable service by itlustrating the potential con-
flict between science and exhibitions. The public viewing
interfered with testing and validating aspects of Al in two
different ways. Public viewing may also lead to a tendency
towards “cuteness” at the expense of showing direct rele-
vance to the USAR community.

5.1 Viewing versus Validation

The conflict between spectator viewing and validation is
best szen by the following example. One of the USF vi-
sion agents identified large regions of heat using a FLIR,

then fused that data with regions of motion, skin color, and
distinctive color extracted by software agents operating on
video data. If there was a sufficiently strong correlation, the
operator interface began beeping to draw the operator’s at-
tention to the possibility of a survivor. {The RWI supplied
user interface for the Urban requires almost full attention
just to navigate, detection assistance is a practical neces-
sity.)

Usnformunately, the test bed has Plexiglas panels to fa-
cilitate judge and spectator viewing. AA Al permitted spec-
tators to ring the sections during the competition. Between
the low height of walls and the Piexiglas, these spectators
were visible and produced color, motion, and 1R signatures
even when the USF robots were facing interior walls due to
views of exterior walls in other sections. As a result, USF
had to um olf automatic victim notification through audio
and rely strictly on color highlighting in the display win-
dows.

A long-term solution is to insert cameras into the
testbed to record, map, and time robot activity as well as
broadcast the event to a remote audience. The competition
chair stated that the audience should be aliowed viewing
access on the grounds that rescue workers would be visible
in a real site. 'We note that at a “real site”, access to the
hot zone 15 strictly controlled and very few, certified techni-
cal rescue workers are permitted in the hot and warm zones.
The rest must wait in the cold zone at least 250 feet from the
hot zone.[4] Also, at a real site, walls would have blocked
views of peaple versus the half height panels.

Second, in order to record and broadcast the event, pho-
tographers and cameramen were penmitted in the ring dur-
ing the exhibitions and competition. During the exhibition,
a cameraman repeatedly refused to move out of the robots’
way. When the robot continued on, it almost collided with
the video recorder.

Therefore, we recommiend:

1. Atleast the Red Section shoutd be fitted with walls and
ceilings to biock the view of non-testbed ¢lements and
the audience.

2. The test bad sections should be fitted with cameras and
no one should be permitted in the test bed during timed
gvents, If a robot dies (such as the USF Urban due to
a faulty power supply or the Arkansas robots due to
software failures), the robot should remain there until
the session is complete.

5.2 Relevance to the USAR Community

in our opinion, the AAA! Competition missed several op-
portunities to show a clear relevance of the NIST test bed
and robots ta the USAR comununity. As discussed earlier,
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USAR professionals should be involved in setting the rules
as well providing realistic scenarios. In general, any further
commpetition venues, such as RoboCup Rescue, should ac-
tively discourage anything that might be construed as triv-
ializing the domain. For example, Swarthmore costumed
their robot us a Florence Nightingale style nurse, which res-
cue workers were likely 10 find offensive. Likewise, a hand-
written “save me” sign was placed next to a surface victim.

The test bed may also miss relevance to the USAR field
if it focuses oaly on benchmarking fully autonomous sys-
terns rather than on more practicable mixed-initiative (ad-
Justable autonomy) systems. The Urban type of robot in
a hardened form capable of operating in cellapsed strue-
tures must be controlled off-hoard: they do not have suffi-
cient on-board disk space to store vision and control rou-
tines. Therefore, the test bed should measure communica-
tions bandwidth, rate, and content in order to categorize the
extent of a system’s dependency on communications. Also,
the test bed should include localized communications dis-
rupters to simutate the effect of building rubble on commu-
nications systems.

6 CONCLUSIONS

Based on our five complete runs in the NIST fest bed at
AAA] and numerous informal publicity demonstrations, the
LJSF team has bad the most time running robots in the test
bed. We conclude that the NIST test bed is an cxcellent
halfway point between the laboratory and the rcal world.
The test bed can be evolved to increasingly difficult situa-
tions. The initial design appeats to have focused on pro-
viding navigational challenges, and it is hoped that future
versions will add perceptual challenges.

Our recommendations fall into four categories. First,
scoring or validation will be a critical aspect of the test bed.
The AAAI competition did not implement a quantitative
scoring system and thus provides no feedback on what are
reasonable metrics. We recommend many metrics, but our
guiding suggestion is to get knowledgeable representatives
from the USAR community involved in setting up scenarios
and metrics. In particular, we note that the victims should
be distributed in accordance to FEMA statistics for surface,
lightly trapped, void trapped, and entombed victims, and
then points awarded accordingly. One major issue that
arose from the USF team frying to reconstruct its rate of
victim detection was that there needs to be an unambiguous
method for signaling when a victim has been detected.
Another aspect of scoring is to complement the proposed
AAAL “black box™ (external performance) metrics with a
rigorous “white box"(software design and implementation)
evaluation. Second, the test bed should be made more
representative of collapsed buildings. We believe this can

be done without sacrificing the motivation for the different
sections. For example, all sections need to have void
spaces representative of the three types discussed in the
FEMA literature (lean-to, V, and pancake). The Yellow
Section can still have a level, smooth ground planc but the
perceptual chailenges can be more realistic. Third, the test
bed should resolve the inherent conflict between spectator
viewing and validation. We believe this can be done by
inserting cameras into the test sections as well as adding
tarps and walls. Finally, we strongly wrge the mobile
robotics community to concentrate on making the NIST
test bed and any competition venue which uscs the test bed
to be relevant to the USAR community. The community
should resist the tendency to “be cute” and instead use the
test bed as a means of rating mixed-initiative or adjustable
autontomy systerns that can be transferred to the field in
the near future as well as the utility of fully autonomous
systems.
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Abstract

in this paper, performance metrics used in the
AAAL Mobile Robot Competition and
Exhibition over the ninc ycars of the contest
are compared. Performance melrics have
tended fromm more explicit quantitative
measures to more gualitative measurcs. The
author believes that this trend is the result of
more complex tasks where more aspects need
to be measured. The paper will end by
claiming thal competiions that are to
measure intelligence in robots should include
tasks that require adaptation and leaming,
which the author believe are the hallmarks of
intclligence.

Keywords: mobile robot contests,
competitions, metrics, multi-agent
robotics, learming and  adaptation,

autonomous robots.

1. Introduction

Although there are several annual mobile
robot  competitions, the  American
Associatton for Artificial Intelligence’s
(AAAT) Mobile Robot Competition and
Exhibition has distinguished itself by
attempting to reward those contestants that
show the greatest amount of “intelligence”
in solving a given task {1-6].

Since this event is organized as a
competition, metrics are required for
measuring performance in a task that also
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try to measure the degree of intelligence
the robot has exhibited.

Because the contest is organized under the
sponsorship of the AAAI a goal of the
competition is to foster research and
education in artificial intelligence. As
such, tasks selected for the competition
were picked because they required some
level of “intelligent” behavior or
knowledge representation.

2. Early Years: Quantitative
Metrics

In the first two years of the competition,
less explicit quantitative metrics were
used. However, many teams complained
that the rules were not explicit enough
leading to ambiguities in scoring and in
problems interpreting the rules. Starting in
the third and subsequent years of the
competitions, more explicit and published
quantitative measures of performance in
the task have been used. It was assumed
that completion of the task itself was
indicative of intelligence. Points would be
awarded to various activities (subtasks)
and for abilities and competencies
achieved by the robot. The final score
would be a summation on the individual
points. In some events, points could be
removed for exhibiting some undesired
behavior. Depending on the task, time



would be factored into the score so that
achieving the goal faster would generate
more points.

The critical peint is that every task and
competence had pomnts that were on a
comparable absolute scale. A robot
missing some skill could still win the
competition. The point system would be
published before the event so that teams
knew exactly what score they could obtain
{given that their robot performed as
designed). This also allowed teams to
make design decisions about what to
implement on their robot.

One problem with the explicit quantitative
scoring is trying to properly assign the
proper score to the various competencies.
As observed by Reid Simmons in the third
competition [6], the virtual manipulation
penalty [for not using real manipulation]
“was much too small, providing a big
disincentive for actually trying to grasp
objects.”

Another problem with using an explicit
metric has been “gaming,” where teams
tailor their approaches to maximizing the
metric. In some cases these high scoring
entries violated the spirit of the particular
competition. It was possible to exploit the
metric in ways that gave less “intelligent”
robots advantages in scoring,

Here is an illustrative example. Consider
a “smart” robot that successfully exhibits
all of the competencies; that is, it performs
all of the aspects of the task itself,
autonomously. The only problem is that
this robot is slow, because of all of the
processing. Now consider a not-quite-as-
smart robot. Much less competent than
the smart robot, it explicitly skips parts of
the contest, gets help from the human, and
consequently gets less competency points.
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But its so much faster that the overall total
number of points is higher. In essence,
speed wins even though part of why it was
faster was because it skipped the slower,
harder parts of the task.

To prevent these problems, it is necessary
to  design point  systems  where
competencies define strict boundaries
where lower level competencies cannot
outscore higher-level competencies. But in
complex tasks, this can become difficult to
achieve.

3. Recent Years: Qualitative
Metrics

In recent years, as the scope of the tasks in
the contests have become more complex,
we have found explicit quantitative
metrics more difficult to implement, while
at the same time having a desire to reduce
gaming.

There are two reasons why the added
complexity in the tasks have lead to
difficulty. First, the tasks generally have
multiple, sometimes conflicting aspects,
and second, some of the required
competencies are difficult to measure
quantitatively themselves.

Human-robot communications is one
competency that has proved difficult to
judge in some domains. As observed in
the second competition, .. because robots
must often interact with humans, we tried
to emphasize communications between
man and machine. With a few exceptions,
this aspect of the competition 1s still
disappointing, and it is difficult to design
tasks that reward appropriate
communication.”

Starting in the seventh annual competition,
an hors d’oeuvres serving contest required



the robots to serve conference attendees at
a reception. Human-robot interaction was
an important judged competency of the
robots bebhavior, as was how much of the
reception area was covered, and whether
the robots could perceive when they
needed to refill their trays. Obviously a
single explicit quantitative metric is
difficult.

Interesting, the first year of this contest,
they awarded two separate awards based
on different metrics. In addition to
judging technical performance (which
included the “intelligence,” they also had a
popular vote where conference attendees
voted for their favorite entry. Its
noteworthy that the robot that won first
place in technical achievement did not win
the popular vote.

We have tried various approaches that in
general use more qualitative measures
externally, while in some cases retaining
internal quantitative metrics. In general,
this means publishing more qualitative
metrics, and hiding any explicit
quantitative measures from the teams.

This is more of an “Olympic Figure
Skating” style of scoring: a series of
internal metrics are used in several
categories that try to capture certain
qualitative competencies. Judges, who are
instructed in the qualitative aspects of
these competencies, then assign a score
from one to ten in each aspect, based,
where possible, on an internal quantitative
score.  The external scores are then
averaged, and each team is assigned a
score from one to ten. By eliminating the
external, published metrics, gaming could
be avoided.

However, this style of scoring is generally
difficult to implement. It also requires that
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the judges are carefully instructed, and that
the qualitative aspects of the competencies
are very well described such that teams are
not mislead as to the way to achieve good
scores, and to reduce the ambiguities like
those that were present in the first two
years of the competition.

This Olympic style of scoring is not
appropriate for all competitions. For
example, in the RoboCup competitions,
where simulated and real robot teams
compete in soccer competitions, there is a
clear and natural quantitative score — the
number of goals each team makes against
the other.

Scoring Multiple Robots

One ongoing debate is how to measure the
performance of multi-agent teams. The
question is whether multi-robot entries
need to exhibit better than linear
improvements in performance over single
robot teams.

Those who believe in super-linear
improvement believe that the additional
robots should introduce improvements that
cannot be obtained by simply adding more
robots to perform in parallel.  Others
believe that the proper metric involves
looking at the total cost of implementing
the team. Here the belief is that having
multiple, inexpensive robots is equal to
single expensive robots. There are several
excellent articles in this proceedings on
metrics for multi-agent systems.

Learning and Adaptation in
Future Contests
One competency that distinguishes

intelligence is the ability to learn and adapt
to unanticipated events and conditions.



I would like to see competition events that
require learning and adaptation in order to
be most successful in the task. The
learning and adaptation would not need to
be directly scored, per se, but the tasks
should be designed so that success is
easier with those capabilities.

Although earlier competitions have stated
this as a desired feature, learning usually
just required building maps and learning
locations of items in the environment, and
adaptation was usually involved changing
the robot’s internal representations of the
environment.

In particular, events where features of the
environment change which require
different sensing modalities or changes in
strategies would allow for real indication
of a robots “intelligence.” Allowing judges
to introduce failures in robots capabilities
would be an ultimate test of the robots
capability to adapt!
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ABSTRACT

For highly agile autonomous systems, the dynamics plays a central role in the develop-
ment of planners and feedback controllers to achieve a certain desired task. Trajectory
plans that do not satisfy the system dynamics and constraints have a small likelihood
for implementation without placing undue demands on the controllers. Coordinated con-
trol of such systems in groups becomes even more challenging because of the potential of
dynamic interaction between members of the group, distributed nature of sensing, compu-
tation, and control. Among other desirable criteria, such as low energy consumption and
constraint satisfaction, a measure of performance for robotic systems is compliance with
its own dynamics and those of the other co-players in the group.

In this paper, we propose a benchmark problem for controller performance evaluation
of a group of mobile robots. This benchmark experiment is inspired by a platoon of
autonomous vehicles with the goal to change its formation over time. The objective is
to obtain these formation changes while minimizing certain meaningful cost criteria. We
assume that the physical models that describe the system are subject to errors. The sensor
is not perfect and the structure of the controller has been selected by a user. For such a
system, we can obtain the theoretically optimum trajectory with a measure of the cost.
This cost can then be compared to the actual cost during hardware implementation on an

experiment set up.
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We propose the following hardware set up with four vehicles in our Mechanical Systems
Laboratory at University of Delaware. We plan to make this physical facility available to
other members of the research community to test the effectiveness of their algorthims and
controller implementations. Within such a facility, the different parameters of the model
and controller can be altered to evaluate the performance sensitivities as a result of these
change in parameters.

Our implementation on this experiment setup will be based on a two degree-of-freedom
controller approach: (i) development of a reference trajectory for the system consistent
with dynamics and constraints; (ii) an exponentially stable controller implemented around
the reference trajectory. The reference trajectory development will be based on results
from nonlinear systems theory and feedback linearization to efficiently solve the problem
in a higher-order space, with a large fraction of computations done off-line ([1], [2], [3]).
Such a study will bring out the issues of performance degradation during an experimental
task and will provide a rich test-bed for comparing the effectiveness of different paradigms

of control.
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Abstract

In this paper, we present a multi-sensor cooperation
paradigm between an omnidirectional vision systemand a
low cost panoramic range finder system using to localize
a mobile robot in its environment. These two sensors,
which have been used independently until now, provide
some complementary data. This association enables us to
build a robust sensorial model which integrates an
important number of significant primitives. We can thus
realize an absolute localization of the mobile robot in
particular configurations, like symmetric environments,
where it is not possible to determine the position with the
use of only one of the two sensors. In a first part, we
present our global perception system. In a second part, we
describe our sensorial model building approach and our
segment classification method which takes into account
the belief notion concerning a sensor. Finally we present
an absolute localization method which uses three
matching criteria fused thanks to the combination rules of
the Dempster-Shafer theory. The basic probability
assignment got for each primitive matching enables to
estimate the reliability of the localization. We test our
global absolute localization system on several robot’s
elementary moves in an indoor and symmetric
environment.

1 INTRODUCTION

Autonomous mobile robots cannot rely solely on dead-
reckoning to determine their configuration because dead-
reckoning errors are cumulative. That'swhy they must use
exteroceptive sensors that get information from the
environment in order to estimate the robot's location more
accurately. This leads to a classical localization method
based on the fusion of dead reckoning data and
exteroceptive data. The fusion method generally used is
based on the extended kaman filter (EKF). The
perception systems used both with the dead reckoning can
be of different natures: a goniometer [3], the SYCLOP
system [4], alaser range scanner [2].

Another approach consists in using only exteroceptive
data: the robot’s configuration is calculated in the
environment reference  without using previous
information. To answer to this problem, two strategies are
generally used. The first consists in marking the robot’s
evolution world with artificial beacons [5]. The second

one consists in using the intrinsic features of the
environment (doors, edges, corners...)[4] [1].

Artificial beacons can be detected fast and reliably and
provide accurate positioning information with minimal
processing. This kind of system is generally employed for
industrial applications [10]. Unfortunately, these methods
lack flexibility and modularity because it is necessary to
fit out the robot's evolution environment.

The other solution consists in referencing on
environment characteristic elements and offers a great
modularity because the robot can localize itself directly in
accordance with the landmarks. This kind of localization
is founded on a matching stage between a sensorial model
and a theoretical map of the environment. The perception
systems used in that case are often the vision systems and
the range finding ones. Perez in [6] determines with a
panoramic laser range finder the absolute position of its
robot by using the line segments as sensorial primitives.
Similarly Yagi uses an omnidirectional vision system to
develop navigation and environment map building
methods [1]. We can notice that the robustness of these
methods is mainly linked to the matching stage. The more
precise and rich information the sensorial model will give,
the more robust the matching stage will be.

That is why we have worked on alocalization approach
based on the cooperation of two omnidirectional
perception systems: the vision system SY CLOP and alow
cost range finder system. The association of these two
kinds of complementary information permits to generate a
sensorial model with a high descriptive level. Then, the
matching stage provides an unigue solution and we obtain
a robust absolute determination of the robot’s
configuration.

The first part of this paper presents the global
omnidirectional perception system. The second part deals
with the sensorial model building method based on the
management of two types of information. We describe
also our classification method of the obtained segments on
two classes according to their reliability. Our absolute
localization method, based on a Dempster-Shafer
multicriteria fusion approach, will be presented in the last
part. In the conclusion we will analyze the experimental
results reached with our mobile robot SARAH.



2 THE GLOBAL OMNIDIRECTIONAL PERCEPTION
SYSTEM

To localize our mobile robot, we use an original
perception system making cooperate two omnidirectional
sensors: an omnidirectional vision system (SYCLOP) [4]
and a low cost and fast panoramic range finder system
(Figure 1). These two sensors have been developed and
used independently within our laboratory [4] [9]. The
rotation axis of the laser is in line with the center of the
conic reflector. This geometric constraint is taken into
account at the time of a previous phase of calibration.
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Figurel: Theglobal perception system

The range finder system is an active vision sensor. This
method consists in projecting on the scene a visible light
with known pattern geometry (alaser spot in our case). A
camera images the illuminated scene with a given
parallax. The desired 3D-information can be deduced
from the position of the imaged laser point and the lateral
distance between the projector and the camera (Figure 2).
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Figure2: The geometric configuration of an active triangulation system.

The laser beam intersects the landmark M1 in the point
P1 (Figure 2). This point is projected on the retinal plane
through the focal point F to a point ul. A landmark M2,
located at an other distance, generates a point u2. The
distance of the landmark or the object Mi can be
determined from the position of the point ui.

This perception system allows to obtain an
omnidirectional range finding sensorial model. We
manage in the sensorial model reference the cartesian
distance between the laser spot and the sensor. The kind

of primitivesisthe samethat a classical range finder laser.
The interest of this system is on the one hand its low cost
and on the other hand its rapidity.

The prototype we built is constructed from a laser diode
and a CCD camera. An infrared filter is used to extract
only the light of the laser. The effective measurable
distance region is designated as 0.8m-5m: this distance is
thought to be a sufficient distance for a mobile robot to
detect obstacles and maneuver around them.

The experimental study of this sensor is presented in [9].

The SYCLOP system, similar to the COPIS one [1], is
composed of a conic mirror and a CCD camera. It allows
to detect all the vertical landmarks of the environment
thanks to a two dimensional projection. (Figure 3). The
vertical landmarks are characterized by a radial straight
line corresponding to a high contrast variation. These
radial straight lines are extracted with a treatment based
on the Sobel gradient. We can note that we work in fairly
constraint environments, which not generate an excessive
number of detected landmarks.
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Figure3: Principle of the omnidirectional sensor SYCLOP

This two omnidirectional sensors association permits to
manage some complementary and redundant information
within the same sensorial model. With the SYCLOP
system we exploit, after the segmentation phase [1], the
radial straight lines which characterize angles of every
vertical object as, for example, doors, corners, edges,
radiators. With the vision system, the information of depth
cannot be gotten on an unique acquisition. For example, it
is not possible to differentiate with this only sensor use
the notion of opening (corridor, opening of door....) and
the notion of vertical object (closed door, radiator,...)
(Figure 4).

For a higher description level, it is therefore interesting
to use a sensor providing some complementary
information. Then we have associated to SYCLOP an
inexpensive range finding sensor capable to be fast.
Following a segmentation stage [9], this sensor permits us
to exploit sensorial primitives that are segments Figure
4). These segments characterize straight partitions of the
environment. In this case we have the notion of depth, but
it isimpossible to differentiate two vertical objects placed
in the same alignment: for example two closed doors
placed on the same wall (Figure 4). It misses the notion of
angle that will be provided by the SY CLOP system.
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Finally this cooperative approach permits to construct a

sensorial model whose descriptive level is high. This
descriptive level is superior to the one obtained with each
sensor individually. Moreover with an appropriated
management of the redundant data (separation between
two segments for the range finder and radial straight line
for the SY CLOP system) we can compensate a sensorial
information absence on one of thistwo sensors (Figure 4).

3

SENSORIAL M ODEL CONSTRUCTION

The sensorial model of the evolution world is based on

the taking into account of two types of data (Figure 4): the
vertical landmarks angles and the segments characterizing
walls. Segments are managed with two points whose
coordinates are expressed in the robot’s reference. The
managed primitive in the final sensorial model will be
segments. These segments will be determined with two
types of approaches :

a

An approach based on the data complementarity: this
treatment consists in cutting up segments gotten with
the range finder in subsegments (Figure 5). The
carving is realized with the radial straight lines of the
vision system.

An approach based on the data redundancy: the
redundant aspect is characterized by the detection of a
vertical landmark with the two sensors (Figure 5). In
certain cases a vertical landmark is detected by the
range finder with the end points of segments. We will
be able to confirm the existence of a segment
extremity if aradial straight line corresponds to it. In
case of radial straight line absence we will keep the
segmentation obtained with the range finding
sensorial model.
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Figure5: The Different cases of the cooperation algorithm.

We have integrated these different cases of cooperation
in the sensorial model building algorithm shown on
Figure 6.

The first step consists in extracting line segments from
the set of points given by the sensor. We use the recursive
Duda-Hart segmentation algorithm [7] [9]. To decrease
the noise sensitivity of this algorithm we have added a
pre-processing stage on the set of points in order to
eliminate the aberrant points. Besides, in order to fit as
better as possible the set of points, we apply aleast square
algorithm on the obtained segments.

RANGE FINDER
MODEL SYCLOP IMAGE

{ !

Duda-Hart
segmentation

\/

P1: range finder and
Syclop data fusion

¥

P2 : redundant data
detection and merging

I

P3 : non significant
segments elimination

Hough segmentation

SENSORIAL MODEL
Figure6: Principle of the global sensorial model building algorithm

From the SY CLOP image, we treat the radial lines with
a segmentation algorithm based on a simplified Hough
transform. We fixed the threshold detection of a radial
line (number of pixels composing a radial line ) to an
important value in order to keep the significant radial
primitives.

The fusion step, described on Figure 4 and Figure 5, is
based on the taking into account of three cases:

Q The treatment of redundant data (case 1 of Figure 5).
In this case we take as hypothesis to use the radial
line systematically to determine the end point of a
segment. The angle of a vertica landmark is
determined more precisely with the vision system that
with the range finder.

QO The treatment of complementary data (case 2 of
Figure 5). This treatment consists in cutting up a
range finding segment into several final subsegments.
This stage is based on the segment intersection
determination.



Q The treatment of missing data (case 3 of Figure 5).
The notion of missing data is here characterized by a
vertical landmark which is not detected with the
vision sensor. In this case the range finding
breakpoint is considered directly.

During this stage, we classify the segments and
subsegments we get in two classes of reliability: a class
"SURE" and a class "UNCERTAIN". In this purpose, we
take into account five criterion for each segment.

The first criteriais the mean distance between the range
finding points contained by the segment and this segment.
If this mean distance is high, it means that the points are
not very well aligned, so this segment is not very sure.

The second criteriais the number of points supported by
the segment. This criteriais only discriminative when the
segment contains very few points. In this case, it is not
sure.

The third criteria is the segment density of points. As
shown in [9], a major drawback of this kind of
triangulation depth sensor is a decreasing resolution with
increasing distance. So, this criteria, which is linked to the
mean distance between the sensor and the set of point, isa
good indicator of the segment reliability (more distant the
set of points is, less the precision is). Considering the
measure extent of the sensor (0.8m from 5m), the minimal
and maximal density are as shown onFigure7.
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Figure7: quantification of the density criteria

The fourth criteria analyzes if the segment has been
detected by one or by the two sensors. The different cases
are:

Q Thetwo extremities of a segment are detected only by
the laser range finder (segment Sl in the case 1 of
Figure 8). This segment has aweight of 1.

O One extremity of a segment is detected by the laser
range finder and the other extremity is detected only
by the conic mirror (segment Sl in the case 2 of
Figure 8). This segment has a weight of 2 because, as
we say before, we think that the radial straight lines
are more precise and reliable.

O One extremity of a segment is detected by the two
sensors and the other extremity is detected only by
the laser, or the two extremities are detected only by

the conic mirror (segment Sl in the case 3 of Figure
8). This segment has aweight of 3.

O One extremity of a segment is detected by the two
sensors and the other extremity is detected only by
SYCLOP (segment Sl in the case 4 of Figure 8). This
segment has aweight of 4.

O Thetwo extremities of a segment are detected by the
two sensors (segment S1 on the case 5 of Figure 8).
This segment has aweight of 5.
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The last criteria concerns a gray level curves extracted

from the SY CLOP image. We take into consideration five
concentric gray level circles whose average is made. We
obtain thus one gray level curve from 0 to 360 degrees.

We apply on the portions of curve which represent a
segment aleast square algorithm. We obtain a straight line
and we compute the mean difference of the gray level

value from this line. If this mean difference is high, this

means that the gray level sector is not constant. This case
occurs generally when a landmark has not been detected

by SY CLOP, so this segment is not sure.

2| 4 G
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Figure9 : thegray level curve of the experimental result shown fig. 14




The fusion of these five criteria is made thanks to the
combination rules of the Dempster-Shafer theory [8][11].
We use this theory because it is an interesting formalism
which enables to represent ignorance. Our frame of
discernment is composed of two elements: "SURE" and
"UNCERTAIN". The basic probability assignments my,
mp, mg, My and g for this five criteria are shown in Figure
10. We can see that, for certain values, the criterion are
not discriminative and Dempster-Shafer enables to
represent this ignorance (for example, if the density is
equal to 0.12 points/cm, this value does not permit to take
adecision SURE or UNCERTAIN for this criteria).
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Figure 10: the B.P.As of the four classification criteria
({SURE,UNCERTAIN}=Q)

For thefourth criteria, the B.P.A. are:
weight 1:my(SURE)=m(Q)=0.6, my(UNCERTAIN)=0.4

weight 2:my(SURE)=0, my(Q)=1, my(UNCERTAIN)=0
weight 3:my(SURE)=0.3,my(Q)=0.7,my(UNCERTAIN)=0
weight 4:my,(SURE)=0.6,my(Q)=0.4,my(UNCERTAIN)=0
weight 5:my(SURE)=1, my(Q)=my(UNCERTAIN)=0

We can then perform the combination cal culation thanks
to the Dempster-Shafer rules [8][11]. If the conflict
coefficient k between the elements of the frame of
discernment is superior to 0.7, it means that our criteria
disagree. In this case, we decided that our segment is
uncertain. If k<0.7, we compute the combination of belief
functions for each element of the frame of discernment
and we choose the class which has the maximal B.P.A.

The last stage (P3 on Figure 6) consists in eliminating
the non significant segments in the final cooperative
sensorial model. A non significant segment is
characterized by anumber of range finding points equal to
0 and a length (Cartesian distance) inferior to a
predetermined threshold.

This stage permits to decrease the combinatory aspect of
the matching stage and to increase the robustness.

This building algorithm enables to get a sensorial model
where the number of exploitable primitives is more
important than the number of primitives got by each
sensor when it works individually. Besides, we obtain a
certainty information of a segment by considering five
criteria. This information will be used in the matching
phase.

4 ABSOLUTE LOCALIZATION METHOD

The robot configuration is determined by matching the
sensorial model, got by multisensor cooperation, with a
theoretical map of the environment. The primitives used
for this matching phase are segments. Therefore, all
environment’s elements like doors, walls, windows,
radiators... are indexed as segments in the theoretical
map.

For each segment, we have considered three
correspondence tests, which are similar to these used by
Crowley [7]:

Q theangular difference between the two segments,
Q thedifferencein length between the two segments,
Q thedistance between the centers of the two segments.
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Figure 11: The three matching criteria.

The fusion of these three treatments is made thanks to the
combination rules of the Dempster-Shafer theory [8]. Our
frame of discernment is composed of two elements. YES
and NO corresponding to those assertions : "Yes, we can
match the two segments" and "No, we can not match the
two segments'. For each criterion, we have determined
the Basic Probability Assignments (B.P.A.) my, m , my
shown Figure 12.
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We can then perform the combination cal culation thanks
to the Dempster-Shafer rules [8]. Since we have three
criteria, we first fuse the two first criteria.

The conflict coefficient between these two first criteria
is:
kiz = My (YES).mp(NO)+ my(NO).my(YES) (1)

If kip<1, the conflict is not complete and the
combination of belief functions my, for these two elements

of the frame of discernment is given by:
m, (YES)m, (YES) +m, (VES)m, (Q) + m, (Q )m, (YES)

m,, (YES)= .
m,,(NO) = M{NOJm, (NO)+ “(E‘i)fz(q” m (Q)m,(NO)
m,(Q) = @)m.(Q) 2)

1- k12
Then we fuse the last criterion. We compute the conflict
coefficient k (3) between this criterion and the two criteria
we have fused above:

k= my(YES).mg(NO) + myo(NO).my(YES) (©)

If k>0.7, we think that the conflict is too high. So we
decide to take a prudent decision: we don't match the two
segments. If k<0.7, we compute the combination of belief
functionsfor each focal element:

m(YES) - m, (YES)mB(YES ) + mlz(YES)'ms (Q) +m, (Q)ms (YES)
k

1-
m(NO) - mlz(NO)-ms(No) +mLz(NO)m3(Q) tm, (Q)-ms(NO)
1- k
m(Q)= mlz(tf)-rzs(b): nl(Q)-nIz(E)m(Q) (4)
The segments are matched if B.P.A. for the YES m(YES)
issuperior to the B.P.A. for the NO m(NO).

The first stage of this localization algorithm consists in
determining a list of sensorial segments Ls which have a
strong probability of existence. This segments are the
"SURE" segments obtained during the fusion stage.

We consider that the length of these segments has been
determined with a good accuracy. So, our starting
correspondence test is the length of a segment.

In the second stage, we consider a segment Ls, from the
list Ls and we search the theoretical map segments which
length is similar to the Lsc segment length. Each found
theoretical segment is superposed on the sensorial
segment Ls, and we apply the third step in order to test the
correspondence of the other sensorial segments.

The third step consists in applying the three criteria
describe above on all the segments on the list Ls except
the segment Ls.. A segment is matched if the B.P.A. for
the YES is superior to the B.P.A. for the NO. To choice
the optimal matching solution we calculate a V criteria.
For each matched segment pair, we increment this V
coefficient which characterizes the robustness of the
global matching. V is managed with the following
algorithm:

G ven:

B the B.P.A for the YES of the matched
segment pair

W a weight linked to the segment's class
(SURE segnent: w=3, UNCERTAIN segnent:
w=1) .
FOR each gl obal natchi ng
V=0

FOR each segment mat ched
V =V + (B'W
END
END

Sowe can seethat V is an interesting and discriminative
indicator of the global matching relevance since V takes
into account the class of each matched segment ("SURE",
"UNCERTAIN") and the quality of each matched pair
(through the B.P.A. for the YES).

These three steps are then repeated for all the Ls list
segments. The final solution is the one which permits the
maximal V.

5 EXPERIMENTAL RESULTS

To test the robustness of our localization algorithm,
we have performed it on several sensorial acquisitions
made in an indoor environment (Figure 13). The two
omnidirectional acquisitions are made when the robot is
stopped. The omnidirectional acquisitions and the
localization algorithm are computed in a Pentium PC
located on our mobile robot. A Matrox Meteor |l video
card is used to acquire the omnidirectionnal image and the
laser acquisition. Our experimental perception system is



shown on Figure 13.
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Figure 13: Our global omnidirectional perception system and the
experimental indoor environment.

In order to show the interest of our cooperative
approach, we have tested our localization method on
symmetric environments (the first picture on Figure 13).
The use of one sensor individually instead of the two
sensors emphasizes the robustness problem: a strong
failure rate has been observed for the matching phase
when we use only one sensor [9].

The first environment is a long corridor (length: 50
meters). Figure 14 shows a sensorial model got with our
cooperative approach. The robot is located in the middle
of the corridor (Figure 13). We can see on Figure 14 the
final decomposition on an set of segments which represent
doors and parts of wall. We show on this figure the radial
straight lines obtained with the omnidirectional conic
mirror. We must note that, for this environment, the depth
sensor would not have been able to localize the robot: two
parallel identical segments would have been detected. The
SYCLOP system used alone would have posed the
problem of environment symmetry. We can also remark
that uncertain segments are the segments which are far
from the robot (not well aligned) or which correspond to
the pillars of the corridor (not detected during the Duda-
Hart segmentation stage). The robot final position
successfully obtained shows the robustness of our method
and its accuracy. We have indeed a position error of 8cm
and an orientation error of 3 degree.
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Figure 14: the cooperative sensorial model with the segments
classification and the BPA(U=UNCERTAIN, S=SURE) (first figure) and
thefinal position determination corresponding to the optimal matching

We show on Figure 15 results obtained in an other
symmetric environment: alaboratory square hall.
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Figure 15: cooperative sensorial model and final position determination
inahall environment.

The same remarks can be done: the use of the two
sensors provides enough sensorial information to enable
the matching algorithm to converge to a coherent solution.

The third environment is the end of the corridor shown
Figure 13. This environment constitutes a favorable
experimental configuration: it is not symmetric and it has
an important number of exploitable landmarks (figure 10).
We can note here on several robot's configuration
determination that our matching selection criteriais highly
discriminative: the good configuration has been computed
on all the acquisitions.
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Figure 16: cooperative sensorial mode (first figure) and final position
determination.

Finally on a complete path makes in the corridor by
our robot mobile SARAH, we could note on 40
acquisitions that, on the one hand, al the absolute
configurations have been determined correctly, and, on
the other hand, the mean error was equal to 11 cm in
position and 3 degree in orientation.

In spite of an important combinatory aspect, our
cooperative localization method proves to be robust and
particularly accurate.

6 CONCLUSION

We have presented in this study an absolute localization
approach based on the cooperation between two
omnidirectional sensors: an omnidirectionnal vision
sensor and a range finding sensor. This association allows
to treat two types of complementary data. Then we obtain
a highly descriptive sensorial model which integrates an
important number of primitives and enables to increase
the robustness of the matching stage. We classify also
every sensed segment in two reliability classes according
to five criteria fused thanks to the Dempster-Shafer rules.
The absolute localization paradigm based on this
matching stage takes into account several criteria which
are merged with the Dempster Shafer rules. The choice of
the optimal matching is based on a highly discriminative
criteria which associates the segment reliability classes
and aB.P.A. linked to the matching stage. We have tested
our cooperative absolute localization algorithm on several

particular environment like for example symmetrical
environment. On the one hand, we can note on these
experimental results that the robot's configuration
determination is realized in a unique way and on the other
hand the absolute robot's configuration is calculated with
arelatively weak systematic error.

REFERENCES

[1] Y. Yagi, Y. Nishizawa, M. Yachida, “Map-based
navigation for a mobile robot with omnidirectional image
sensor COPIS’, |EEE Trans. on Robotics and Automation
Vol. 11, pp. 634-648, October 1995.

[2] J.Gomes-Mota, M.l. Ribeiro, “A multi-layer robot
localisation solution using a laser scanner on reconstructed
3D models’, Proc. on the 6" Int. Symposium on
Intelligent Robotic Systems, Scotland, 1998.

[3] P. Bonnifait, G. Garcia, “Design and Experimenta
Validation of an Odometric and Goniometric Localization
System for Outdoor Robot Vehicles.”, IEEE Trans. on
Raob. and Aut. Vol. 14, No 4, pp. 541-548, August 1998.

[4] C. Drocourt, L. Delahoche, C. Pegard, C. Cauchoais ,
"Localization method based on omnidirectional
stereoscopic vision and dead-reckoning”, Proc. of the
IEEE Int. Conf. on Int. Robots and Systems, Korea,
October 1999

[5] H.R Beom, H.S. Cho, “Mobile robot localization using ¢
single rotating sonar and two passive cylindrical beacons’,
Robotica, Vol. 13, pp. 243-252, 1995.

[6] JA.Perez, JA. Castellanos, JM.M. Montidl, “Continuous
localization: vision vs. laser”, IEEE Proc. of Int. Conf. on
Rob. and Aut. pp 2917-2923, Detroit, May 1999.

[7] J. Crowley, "Navigation for an intelligent mobile robot",
IEEE Journal on Robotics and Automation, Vol. RA-1,
n°1, pp. 31-41, March 1985.

[8] G.A. Shafer, “A mathematical theory of evidence’,
Princeton : university press, 1976.

[9] A. Clérentin, C. Pégard, C. Drocourt “Environment
Exploration Using an Active Vision Sensor”, Proc. of the
IEEE Int. Conf. on Intelligent Robots and Systems
(IROS'99), Korea ,October 1999.

[10] J. Hollingum, “Caterpillar make the earth move :
automatically”, Industrial Robot, Vol. 18, N° 2, pp. 15-18,
1991.

[11] A. Dempster, “Upper and lower probabilities induced by &
multivalued mapping”, Annals of mathematical statistics
38:325-339, 1967.



A MULTI-SENSOR COOPERATIVE APPROACH FOR THE
MOBILE ROBOT LOCALIZATION PROBLEM

Arnaud CLERENTIN, Laurent DELAHOCHE, Eric BRASSART

CREA

Centre de Robotique, d'Electrotechnique et d'Automatique
IUT, département Informatique, Avenue des Facultés, 80000 Amiens— France

Arnaud.Clérentin@iut.u-picardie.fr , Laurent.Delahoche@u-picardie.fr

Abstract

In this paper, we present a multi-sensor cooperation
paradigm between an omnidirectional vision systemand a
low cost panoramic range finder system using to localize
a mobile robot in its environment. These two sensors,
which have been used independently until now, provide
some complementary data. This association enables us to
build a robust sensorial model which integrates an
important number of significant primitives. We can thus
realize an absolute localization of the mobile robot in
particular configurations, like symmetric environments,
where it is not possible to determine the position with the
use of only one of the two sensors. In a first part, we
present our global perception system. In a second part, we
describe our sensorial model building approach and our
segment classification method which takes into account
the belief notion concerning a sensor. Finally we present
an absolute localization method which uses three
matching criteria fused thanks to the combination rules of
the Dempster-Shafer theory. The basic probability
assignment got for each primitive matching enables to
estimate the reliability of the localization. We test our
global absolute localization system on several robot’s
elementary moves in an indoor and symmetric
environment.

1 INTRODUCTION

Autonomous mobile robots cannot rely solely on dead-
reckoning to determine their configuration because dead-
reckoning errors are cumulative. That'swhy they must use
exteroceptive sensors that get information from the
environment in order to estimate the robot's location more
accurately. This leads to a classical localization method
based on the fusion of dead reckoning data and
exteroceptive data. The fusion method generally used is
based on the extended kaman filter (EKF). The
perception systems used both with the dead reckoning can
be of different natures: a goniometer [3], the SYCLOP
system [4], alaser range scanner [2].

Another approach consists in using only exteroceptive
data: the robot’s configuration is calculated in the
environment reference  without using previous
information. To answer to this problem, two strategies are
generally used. The first consists in marking the robot’s
evolution world with artificial beacons [5]. The second

one consists in using the intrinsic features of the
environment (doors, edges, corners...)[4] [1].

Artificial beacons can be detected fast and reliably and
provide accurate positioning information with minimal
processing. This kind of system is generally employed for
industrial applications [10]. Unfortunately, these methods
lack flexibility and modularity because it is necessary to
fit out the robot's evolution environment.

The other solution consists in referencing on
environment characteristic elements and offers a great
modularity because the robot can localize itself directly in
accordance with the landmarks. This kind of localization
is founded on a matching stage between a sensorial model
and a theoretical map of the environment. The perception
systems used in that case are often the vision systems and
the range finding ones. Perez in [6] determines with a
panoramic laser range finder the absolute position of its
robot by using the line segments as sensorial primitives.
Similarly Yagi uses an omnidirectional vision system to
develop navigation and environment map building
methods [1]. We can notice that the robustness of these
methods is mainly linked to the matching stage. The more
precise and rich information the sensorial model will give,
the more robust the matching stage will be.

That is why we have worked on alocalization approach
based on the cooperation of two omnidirectional
perception systems: the vision system SY CLOP and alow
cost range finder system. The association of these two
kinds of complementary information permits to generate a
sensorial model with a high descriptive level. Then, the
matching stage provides an unigue solution and we obtain
a robust absolute determination of the robot’s
configuration.

The first part of this paper presents the global
omnidirectional perception system. The second part deals
with the sensorial model building method based on the
management of two types of information. We describe
also our classification method of the obtained segments on
two classes according to their reliability. Our absolute
localization method, based on a Dempster-Shafer
multicriteria fusion approach, will be presented in the last
part. In the conclusion we will analyze the experimental
results reached with our mobile robot SARAH.



2 THE GLOBAL OMNIDIRECTIONAL PERCEPTION
SYSTEM

To localize our mobile robot, we use an original
perception system making cooperate two omnidirectional
sensors: an omnidirectional vision system (SYCLOP) [4]
and a low cost and fast panoramic range finder system
(Figure 1). These two sensors have been developed and
used independently within our laboratory [4] [9]. The
rotation axis of the laser is in line with the center of the
conic reflector. This geometric constraint is taken into
account at the time of a previous phase of calibration.
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Figurel: Theglobal perception system

The range finder system is an active vision sensor. This
method consists in projecting on the scene a visible light
with known pattern geometry (alaser spot in our case). A
camera images the illuminated scene with a given
parallax. The desired 3D-information can be deduced
from the position of the imaged laser point and the lateral
distance between the projector and the camera (Figure 2).
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Figure2: The geometric configuration of an active triangulation system.

The laser beam intersects the landmark M1 in the point
P1 (Figure 2). This point is projected on the retinal plane
through the focal point F to a point ul. A landmark M2,
located at an other distance, generates a point u2. The
distance of the landmark or the object Mi can be
determined from the position of the point ui.

This perception system allows to obtain an
omnidirectional range finding sensorial model. We
manage in the sensorial model reference the cartesian
distance between the laser spot and the sensor. The kind

of primitivesisthe samethat a classical range finder laser.
The interest of this system is on the one hand its low cost
and on the other hand its rapidity.

The prototype we built is constructed from a laser diode
and a CCD camera. An infrared filter is used to extract
only the light of the laser. The effective measurable
distance region is designated as 0.8m-5m: this distance is
thought to be a sufficient distance for a mobile robot to
detect obstacles and maneuver around them.

The experimental study of this sensor is presented in [9].

The SYCLOP system, similar to the COPIS one [1], is
composed of a conic mirror and a CCD camera. It allows
to detect all the vertical landmarks of the environment
thanks to a two dimensional projection. (Figure 3). The
vertical landmarks are characterized by a radial straight
line corresponding to a high contrast variation. These
radial straight lines are extracted with a treatment based
on the Sobel gradient. We can note that we work in fairly
constraint environments, which not generate an excessive
number of detected landmarks.
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Figure3: Principle of the omnidirectional sensor SYCLOP

This two omnidirectional sensors association permits to
manage some complementary and redundant information
within the same sensorial model. With the SYCLOP
system we exploit, after the segmentation phase [1], the
radial straight lines which characterize angles of every
vertical object as, for example, doors, corners, edges,
radiators. With the vision system, the information of depth
cannot be gotten on an unique acquisition. For example, it
is not possible to differentiate with this only sensor use
the notion of opening (corridor, opening of door....) and
the notion of vertical object (closed door, radiator,...)
(Figure 4).

For a higher description level, it is therefore interesting
to use a sensor providing some complementary
information. Then we have associated to SYCLOP an
inexpensive range finding sensor capable to be fast.
Following a segmentation stage [9], this sensor permits us
to exploit sensorial primitives that are segments Figure
4). These segments characterize straight partitions of the
environment. In this case we have the notion of depth, but
it isimpossible to differentiate two vertical objects placed
in the same alignment: for example two closed doors
placed on the same wall (Figure 4). It misses the notion of
angle that will be provided by the SY CLOP system.
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Finally this cooperative approach permits to construct a

sensorial model whose descriptive level is high. This
descriptive level is superior to the one obtained with each
sensor individually. Moreover with an appropriated
management of the redundant data (separation between
two segments for the range finder and radial straight line
for the SY CLOP system) we can compensate a sensorial
information absence on one of thistwo sensors (Figure 4).

3

SENSORIAL M ODEL CONSTRUCTION

The sensorial model of the evolution world is based on

the taking into account of two types of data (Figure 4): the
vertical landmarks angles and the segments characterizing
walls. Segments are managed with two points whose
coordinates are expressed in the robot’s reference. The
managed primitive in the final sensorial model will be
segments. These segments will be determined with two
types of approaches :

a

An approach based on the data complementarity: this
treatment consists in cutting up segments gotten with
the range finder in subsegments (Figure 5). The
carving is realized with the radial straight lines of the
vision system.

An approach based on the data redundancy: the
redundant aspect is characterized by the detection of a
vertical landmark with the two sensors (Figure 5). In
certain cases a vertical landmark is detected by the
range finder with the end points of segments. We will
be able to confirm the existence of a segment
extremity if aradial straight line corresponds to it. In
case of radial straight line absence we will keep the
segmentation obtained with the range finding
sensorial model.
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Figure5: The Different cases of the cooperation algorithm.

We have integrated these different cases of cooperation
in the sensorial model building algorithm shown on
Figure 6.

The first step consists in extracting line segments from
the set of points given by the sensor. We use the recursive
Duda-Hart segmentation algorithm [7] [9]. To decrease
the noise sensitivity of this algorithm we have added a
pre-processing stage on the set of points in order to
eliminate the aberrant points. Besides, in order to fit as
better as possible the set of points, we apply aleast square
algorithm on the obtained segments.
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¥
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I
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SENSORIAL MODEL
Figure6: Principle of the global sensorial model building algorithm

From the SY CLOP image, we treat the radial lines with
a segmentation algorithm based on a simplified Hough
transform. We fixed the threshold detection of a radial
line (number of pixels composing a radial line ) to an
important value in order to keep the significant radial
primitives.

The fusion step, described on Figure 4 and Figure 5, is
based on the taking into account of three cases:

Q The treatment of redundant data (case 1 of Figure 5).
In this case we take as hypothesis to use the radial
line systematically to determine the end point of a
segment. The angle of a vertica landmark is
determined more precisely with the vision system that
with the range finder.

QO The treatment of complementary data (case 2 of
Figure 5). This treatment consists in cutting up a
range finding segment into several final subsegments.
This stage is based on the segment intersection
determination.



Q The treatment of missing data (case 3 of Figure 5).
The notion of missing data is here characterized by a
vertical landmark which is not detected with the
vision sensor. In this case the range finding
breakpoint is considered directly.

During this stage, we classify the segments and
subsegments we get in two classes of reliability: a class
"SURE" and a class "UNCERTAIN". In this purpose, we
take into account five criterion for each segment.

The first criteriais the mean distance between the range
finding points contained by the segment and this segment.
If this mean distance is high, it means that the points are
not very well aligned, so this segment is not very sure.

The second criteriais the number of points supported by
the segment. This criteriais only discriminative when the
segment contains very few points. In this case, it is not
sure.

The third criteria is the segment density of points. As
shown in [9], a major drawback of this kind of
triangulation depth sensor is a decreasing resolution with
increasing distance. So, this criteria, which is linked to the
mean distance between the sensor and the set of point, isa
good indicator of the segment reliability (more distant the
set of points is, less the precision is). Considering the
measure extent of the sensor (0.8m from 5m), the minimal
and maximal density are as shown onFigure7.
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Figure7: quantification of the density criteria

The fourth criteria analyzes if the segment has been
detected by one or by the two sensors. The different cases
are:

Q Thetwo extremities of a segment are detected only by
the laser range finder (segment Sl in the case 1 of
Figure 8). This segment has aweight of 1.

O One extremity of a segment is detected by the laser
range finder and the other extremity is detected only
by the conic mirror (segment Sl in the case 2 of
Figure 8). This segment has a weight of 2 because, as
we say before, we think that the radial straight lines
are more precise and reliable.

O One extremity of a segment is detected by the two
sensors and the other extremity is detected only by
the laser, or the two extremities are detected only by

the conic mirror (segment Sl in the case 3 of Figure
8). This segment has aweight of 3.

O One extremity of a segment is detected by the two
sensors and the other extremity is detected only by
SYCLOP (segment Sl in the case 4 of Figure 8). This
segment has aweight of 4.

O Thetwo extremities of a segment are detected by the
two sensors (segment S1 on the case 5 of Figure 8).
This segment has aweight of 5.
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The last criteria concerns a gray level curves extracted

from the SY CLOP image. We take into consideration five
concentric gray level circles whose average is made. We
obtain thus one gray level curve from 0 to 360 degrees.

We apply on the portions of curve which represent a
segment aleast square algorithm. We obtain a straight line
and we compute the mean difference of the gray level

value from this line. If this mean difference is high, this

means that the gray level sector is not constant. This case
occurs generally when a landmark has not been detected

by SY CLOP, so this segment is not sure.
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Figure9 : thegray level curve of the experimental result shown fig. 14




The fusion of these five criteria is made thanks to the
combination rules of the Dempster-Shafer theory [8][11].
We use this theory because it is an interesting formalism
which enables to represent ignorance. Our frame of
discernment is composed of two elements: "SURE" and
"UNCERTAIN". The basic probability assignments my,
mp, mg, My and g for this five criteria are shown in Figure
10. We can see that, for certain values, the criterion are
not discriminative and Dempster-Shafer enables to
represent this ignorance (for example, if the density is
equal to 0.12 points/cm, this value does not permit to take
adecision SURE or UNCERTAIN for this criteria).

m1l: mean distance of the range findings points from the
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Figure 10: the B.P.As of the four classification criteria
({SURE,UNCERTAIN}=Q)

For thefourth criteria, the B.P.A. are:
weight 1:my(SURE)=m(Q)=0.6, my(UNCERTAIN)=0.4

weight 2:my(SURE)=0, my(Q)=1, my(UNCERTAIN)=0
weight 3:my(SURE)=0.3,my(Q)=0.7,my(UNCERTAIN)=0
weight 4:my,(SURE)=0.6,my(Q)=0.4,my(UNCERTAIN)=0
weight 5:my(SURE)=1, my(Q)=my(UNCERTAIN)=0

We can then perform the combination cal culation thanks
to the Dempster-Shafer rules [8][11]. If the conflict
coefficient k between the elements of the frame of
discernment is superior to 0.7, it means that our criteria
disagree. In this case, we decided that our segment is
uncertain. If k<0.7, we compute the combination of belief
functions for each element of the frame of discernment
and we choose the class which has the maximal B.P.A.

The last stage (P3 on Figure 6) consists in eliminating
the non significant segments in the final cooperative
sensorial model. A non significant segment is
characterized by anumber of range finding points equal to
0 and a length (Cartesian distance) inferior to a
predetermined threshold.

This stage permits to decrease the combinatory aspect of
the matching stage and to increase the robustness.

This building algorithm enables to get a sensorial model
where the number of exploitable primitives is more
important than the number of primitives got by each
sensor when it works individually. Besides, we obtain a
certainty information of a segment by considering five
criteria. This information will be used in the matching
phase.

4 ABSOLUTE LOCALIZATION METHOD

The robot configuration is determined by matching the
sensorial model, got by multisensor cooperation, with a
theoretical map of the environment. The primitives used
for this matching phase are segments. Therefore, all
environment’s elements like doors, walls, windows,
radiators... are indexed as segments in the theoretical
map.

For each segment, we have considered three
correspondence tests, which are similar to these used by
Crowley [7]:

Q theangular difference between the two segments,
Q thedifferencein length between the two segments,
Q thedistance between the centers of the two segments.
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Figure 11: The three matching criteria.

The fusion of these three treatments is made thanks to the
combination rules of the Dempster-Shafer theory [8]. Our
frame of discernment is composed of two elements. YES
and NO corresponding to those assertions : "Yes, we can
match the two segments" and "No, we can not match the
two segments'. For each criterion, we have determined
the Basic Probability Assignments (B.P.A.) my, m , my
shown Figure 12.
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We can then perform the combination cal culation thanks
to the Dempster-Shafer rules [8]. Since we have three
criteria, we first fuse the two first criteria.

The conflict coefficient between these two first criteria
is:
kiz = My (YES).mp(NO)+ my(NO).my(YES) (1)

If kip<1, the conflict is not complete and the
combination of belief functions my, for these two elements

of the frame of discernment is given by:
m, (YES)m, (YES) +m, (VES)m, (Q) + m, (Q )m, (YES)

m,, (YES)= .
m,,(NO) = M{NOJm, (NO)+ “(E‘i)fz(q” m (Q)m,(NO)
m,(Q) = @)m.(Q) 2)

1- k12
Then we fuse the last criterion. We compute the conflict
coefficient k (3) between this criterion and the two criteria
we have fused above:

k= my(YES).mg(NO) + myo(NO).my(YES) (©)

If k>0.7, we think that the conflict is too high. So we
decide to take a prudent decision: we don't match the two
segments. If k<0.7, we compute the combination of belief
functionsfor each focal element:

m(YES) - m, (YES)mB(YES ) + mlz(YES)'ms (Q) +m, (Q)ms (YES)
k

1-
m(NO) - mlz(NO)-ms(No) +mLz(NO)m3(Q) tm, (Q)-ms(NO)
1- k
m(Q)= mlz(tf)-rzs(b): nl(Q)-nIz(E)m(Q) (4)
The segments are matched if B.P.A. for the YES m(YES)
issuperior to the B.P.A. for the NO m(NO).

The first stage of this localization algorithm consists in
determining a list of sensorial segments Ls which have a
strong probability of existence. This segments are the
"SURE" segments obtained during the fusion stage.

We consider that the length of these segments has been
determined with a good accuracy. So, our starting
correspondence test is the length of a segment.

In the second stage, we consider a segment Ls, from the
list Ls and we search the theoretical map segments which
length is similar to the Lsc segment length. Each found
theoretical segment is superposed on the sensorial
segment Ls, and we apply the third step in order to test the
correspondence of the other sensorial segments.

The third step consists in applying the three criteria
describe above on all the segments on the list Ls except
the segment Ls.. A segment is matched if the B.P.A. for
the YES is superior to the B.P.A. for the NO. To choice
the optimal matching solution we calculate a V criteria.
For each matched segment pair, we increment this V
coefficient which characterizes the robustness of the
global matching. V is managed with the following
algorithm:

G ven:

B the B.P.A for the YES of the matched
segment pair

W a weight linked to the segment's class
(SURE segnent: w=3, UNCERTAIN segnent:
w=1) .
FOR each gl obal natchi ng
V=0

FOR each segment mat ched
V =V + (B'W
END
END

Sowe can seethat V is an interesting and discriminative
indicator of the global matching relevance since V takes
into account the class of each matched segment ("SURE",
"UNCERTAIN") and the quality of each matched pair
(through the B.P.A. for the YES).

These three steps are then repeated for all the Ls list
segments. The final solution is the one which permits the
maximal V.

5 EXPERIMENTAL RESULTS

To test the robustness of our localization algorithm,
we have performed it on several sensorial acquisitions
made in an indoor environment (Figure 13). The two
omnidirectional acquisitions are made when the robot is
stopped. The omnidirectional acquisitions and the
localization algorithm are computed in a Pentium PC
located on our mobile robot. A Matrox Meteor |l video
card is used to acquire the omnidirectionnal image and the
laser acquisition. Our experimental perception system is



shown on Figure 13.
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Figure 13: Our global omnidirectional perception system and the
experimental indoor environment.

In order to show the interest of our cooperative
approach, we have tested our localization method on
symmetric environments (the first picture on Figure 13).
The use of one sensor individually instead of the two
sensors emphasizes the robustness problem: a strong
failure rate has been observed for the matching phase
when we use only one sensor [9].

The first environment is a long corridor (length: 50
meters). Figure 14 shows a sensorial model got with our
cooperative approach. The robot is located in the middle
of the corridor (Figure 13). We can see on Figure 14 the
final decomposition on an set of segments which represent
doors and parts of wall. We show on this figure the radial
straight lines obtained with the omnidirectional conic
mirror. We must note that, for this environment, the depth
sensor would not have been able to localize the robot: two
parallel identical segments would have been detected. The
SYCLOP system used alone would have posed the
problem of environment symmetry. We can also remark
that uncertain segments are the segments which are far
from the robot (not well aligned) or which correspond to
the pillars of the corridor (not detected during the Duda-
Hart segmentation stage). The robot final position
successfully obtained shows the robustness of our method
and its accuracy. We have indeed a position error of 8cm
and an orientation error of 3 degree.
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Figure 14: the cooperative sensorial model with the segments
classification and the BPA(U=UNCERTAIN, S=SURE) (first figure) and
thefinal position determination corresponding to the optimal matching

We show on Figure 15 results obtained in an other
symmetric environment: alaboratory square hall.

2.0 | (m)

-1.0 |

35 [(m)
robot's
position
after the
matching
stage

(m)
ok

0 1.0 2.0 30 4.0

Figure 15: cooperative sensorial model and final position determination
inahall environment.

The same remarks can be done: the use of the two
sensors provides enough sensorial information to enable
the matching algorithm to converge to a coherent solution.

The third environment is the end of the corridor shown
Figure 13. This environment constitutes a favorable
experimental configuration: it is not symmetric and it has
an important number of exploitable landmarks (figure 10).
We can note here on several robot's configuration
determination that our matching selection criteriais highly
discriminative: the good configuration has been computed
on all the acquisitions.
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Figure 16: cooperative sensorial mode (first figure) and final position
determination.

Finally on a complete path makes in the corridor by
our robot mobile SARAH, we could note on 40
acquisitions that, on the one hand, al the absolute
configurations have been determined correctly, and, on
the other hand, the mean error was equal to 11 cm in
position and 3 degree in orientation.

In spite of an important combinatory aspect, our
cooperative localization method proves to be robust and
particularly accurate.

6 CONCLUSION

We have presented in this study an absolute localization
approach based on the cooperation between two
omnidirectional sensors: an omnidirectionnal vision
sensor and a range finding sensor. This association allows
to treat two types of complementary data. Then we obtain
a highly descriptive sensorial model which integrates an
important number of primitives and enables to increase
the robustness of the matching stage. We classify also
every sensed segment in two reliability classes according
to five criteria fused thanks to the Dempster-Shafer rules.
The absolute localization paradigm based on this
matching stage takes into account several criteria which
are merged with the Dempster Shafer rules. The choice of
the optimal matching is based on a highly discriminative
criteria which associates the segment reliability classes
and aB.P.A. linked to the matching stage. We have tested
our cooperative absolute localization algorithm on several

particular environment like for example symmetrical
environment. On the one hand, we can note on these
experimental results that the robot's configuration
determination is realized in a unique way and on the other
hand the absolute robot's configuration is calculated with
arelatively weak systematic error.
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Abstract

We consider the problem of measuring the perfor-
mance of an wntelligent mobile robot system. We be-
lieve that systems are intelligent because their capabil-
ities are more than the sum of their parts. Therefore
any piecemeal efforts to measure the performance of an
wintelligent system are bound to fail. Further, metrics
of utility are more useful to designers than something
as abstract as intelligence. We describe a task-based,
multiple-criteria technique that combines two bench-
marks to result in a metric for navigation. A case
study of two robots is presented, which were evaluated
and compared using the metric.

1 Introduction

We consider the problem of measuring the perfor-
mance of an intelligent mobile robot system. We be-
lieve that systems are intelligent because their capabili-
ties are more than the sum of their parts. Therefore any
piecemeal efforts to measure the performance of an in-
telligent system are bound to fail. Only measuring per-
formance along a single skill axis is also clearly limiting
since intelligence does not boil down to a single skill or
capability but rather arises due to a complex interplay
between a multitude of capabilities. We strongly advo-
cate the measurement of task-oriented quantities which
establish the utility of a system. To this end, measur-
ing performance along several azes is clearly important
but brings with it several challenges:

e What should the axes be 7

e How do we ensure the axes span the space we want
to benchmark ?

e Does an “orthogonal” set of axes exist 7

e How should the performance measures along these
axes be combined 7

In this paper we describe a task-based, multiple-
criteria technique that combines two benchmarks to
result in a metric for navigation. A case study of two
robots 1s presented, which were evaluated and com-
pared using the metric.

2 Previous Work

Due to space limitations we limit ourselves to a brief
survey of evaluation techniques for mobile robots. The
so-called static evaluation techniques are specifically
designed for measuring stability when the robot is sta-
tionary and when 1t is moving in a statically stable
fashion. The primary method of choice is an energy
based stability measure as an evaluation function. In
work by Nagy et al. [7] two modes of walker stability
are characterized namely stance stability and walker
stability. Both use the amount of energy needed to
destabilize the walking robot as a measure of the sta-
bility of the robot. The stance stability i1s identical to
the energy stability margin defined by Messuri et al. in
[5] as the minimum work that must be done on a robot
walker to tip it over an edge of a support boundary.

Early work on robot stability was due to McGhee et
al. [4] who defined the support polygon as the convex
hull of the projections of all contacting points on a hor-
izontal plane. In [3] the authors define a conservative
support polygon with the motivation that the walking
robot should retain its stability in the event of a single
leg failure. Of the above energy based measures of sta-
bility the work of Nagy et al. is the most general since
it includes compliance of the mechanism and depends
on the terrain that is underfoot.

In [1] the authors discuss several evaluation crite-
ria for comparing three configurations for the design



of a walking robot. Some of the evaluation criteria
were foothold selection area, stride length, static sta-
bility and energy stability. The important tradeoff was
stride vs. stability, based upon which the circulating
configuration for Ambler was chosen.

Dynamic evaluation techniques are so named be-
cause they focus on properties related to motion.
Wilcox [10] introduced a metric called the MCC (Mo-
bility Characteristic Curve) to measure the ability of
a robot to surmount obstacles. The obstacle was a
cylinder of (theoretically) infinite length and diame-
ter d which was buried to a depth d/3 in an inclined
plane of slope s composed of loose sand. The MCC
was defined as the plot with s on the horizontal axis
and the diameter of the largest cylinder that the robot
could surmount (in dimensionless units based upon its
length) on the vertical axis. The proposed figure of
merit was the area between the co—ordinate axes and
the MCC. The two main achievements of this method
were its independence of scale and easy reproducibility.
Its chief drawback was that it used a simple obstacle
geometry and did not evaluate the entire system in a
mission oriented way.

Lietzau [2] proposed a set of benchmarks to assess
the performance of a Mars microrover. These bench-
marks were divided into five categories namely, mo-
bility, navigation and control, science, autonomy and
environmental. A set of weights was assigned to these
categories based upon their importance by the system
designers and mission specialists. The weighted sum
of the individual benchmarks was then proposed as a
figure—of-merit. Lietzau’s work is a thorough descrip-
tion of the individual subsystem tests that are a neces-
sary part of evaluation but does not focus on the system
level evaluation that we emphasize here. Though it was
never formally characterized as such, Lietzau’s evalua-
tion technique is an example of a Linear Programming
approach to solve the problem of evaluation.

3 Case Study

The evaluation methodology that we propose here
is for a particular robot mission - exploration of an
unknown planetary surface. The area to be explored
is assumed to contain rocks whose positions are not
known a priori to the robot since it is presumed to
be in unfamiliar surroundings. The robot mission is
to perform scientific experimentation on rocks that are
“interesting”. We propose two evaluation functions in
this study based on robot displacement as a function
of mission time and energy consumption.

P(r > fo)

time (t)

Figure 1: A Schematic of P(r > rg) vs. Time

3.1 The Cost Functions 7 and 7

The basic intuition behind the two cost functions
proposed 1s to develop a nondimensional measure of
the robot’s ability to cover distance. The idea is to
measure how “good” a particular robot design is by
measuring how far the robot travels from the start lo-
cation as a function of the time elapsed and the en-
ergy consumed by it. At first sight it may seem like
the consumption of these two resources is extremely
well correlated. This is indeed the case for straight-
line travel on level ground with no obstacles. However,
in the presence of obstacles it is not so - especially since
the energy consumption of the system changes dramat-
ically depending on whether it is at a standstill or in
motion.

We define a trial as an autonomous traverse of the
terrain by the robot in a particular instantiation of ob-
stacle placement from start to goal. Using multiple tri-
als we estimate the probability that the displacement
r > rg for different values of the time . A schematic
of this probability as a function of time is shown in
Figure 1. The main intuition is that the quicker this
curve rises (close) to 1, the better the time utilization
of the robot. Further, good time utilization also dic-
tates that this curve be monotonic increasing. For the
purposes of evaluation one is interested in the robot
covering some displacement ry within some time ¢g. In
other words we expect some minimum performance for
a limited resource (time).

The above requirement means that Robot A should
be assigned a higher score than Robot B in Figure 2.
This can be achieved by defining the area under the
curve from t = 0 to { = ty as a metric. In order to
compare robots of different size we measure displace-
ment (r = kl) in terms of the number & of robot lengths
l. We also measure time in nondimensional terms by



P(r > fo)

time (1) to

Figure 2: A Schematic Comparison of P(r > rg) vs.
Time for Robots A and B

multiplying it with v/l where v is the robot velocity.
Let my;(t) denote the probability of reaching a dis-
placement kl as a function of time.

Definition 1 The time figure of merit is defined as

= /Oto (1) dt (1)

In a similar manner we plot the probability of reach-
ing a displacement &kl as a function of the energy e
consumed. Energy is converted to a nondimensional
quantity by dividing it by mgl where m is the mass of
the robot and ¢ is the acceleration due to gravity.

Let my;(e) denote the probability of reaching a dis-
placement kl as a function of energy.

Definition 2 The energy figure of merit is defined as

n= / mri(e)de (2)
0
Note than both figures of merit are non-dimensional.

3.2 The Robots: MENO and Marscar

MENO is a 12 DOF statically stable quadruped
designed and constructed for this study in the USC
Robotics laboratory. FEach leg is a rotary-rotary-
prismatic (RRP) design. The body of the robot and
the first two links of each leg are in the horizontal plane
and the prismatic joints (the most distal joint of each
limb) are in the vertical plane. This orthogonal design
was inspired by the design of Ambler [1].

The wheeled robot Marscar is 4 wheeled rover with
Ackerman steering.!

I Ackerman steering maintains a particular relationship be-
tween the steer angles of the inner and outer wheels in order
that the entire robot turn about a single point.

Figure 3: MENO and Marscar in a Simulated Martian
Environment
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Figure 4: The Control Architecture for the Wheeled
Robot

There are two main behaviors that drive both
They are avoid obstaclesmove() and
reorient_to_goal(). A schematic of the control ar-
chitecture is shown in Figure 4.

robots.

Onboard computing is all done on a custom board
built around a Motorola 68332 microcontroller. A
tether 1s used to supply offboard power for extended
testing and for gathering telemetry. The testing is all
done in a 3.5 m x3.5 m sandbox. A single camera sus-
pended 3 m above the center of the sandbox is used for
tracking the robot’s position. We do not use the over-
head camera as a source of information for navigation;
navigation is done by dead reckoning using information
measured by onboard sensors only. The sand surface is
nominally flat but not precisely so.



Loop until at goal:
If obstacle in front
Compute 'good’ detour direction
Detour
Else
If goal within angular range limits
Move forward
Else
Reorient towards goal
Endif
Endif
EndLoop

Figure 5: The Navigation Algorithm

3.3 The Navigation Algorithm

Both robots above use the same behavior-based nav-
igation algorithm. There are two? basic behaviors; 1.
Reorient towards goal and 2. Avoid obstacles. The
basic idea is for the robot to keep track of its current
position using knowledge of its kinematics and proprio-
ceptive sensors (such as wheel encoders on Marscar and
joint angle measurements on MENO). The estimator
running on board the robot performs a simple dead-
reckoning calculation to estimate position and orien-
tation at every move. The ’avoid obstacles’ behavior
is also fairly simple - if an obstacle is seen the robot
will attempt to detour around it (while keeping track
of its position as mentioned above). If no obstacle is
blocking the robot, 1t will attempt to move towards
the goal, re-orienting itself if necessary. The naviga-
tion algorithm is reactive. A schematic outline of the
algorithm is given in Figure 5.

An interesting part of the detour behavior is the use
of global information. When an obstacle is detected the
reactive strategy is to backup and turn. The direction
of the turn is dependent on the current location of the
robot and the commanded goal location in global coor-
dinates. The turn direction that reduces the difference
between the robot angle and the desired goal angle 8,
is chosen and executed. A purely local strategy would
pick one direction at random but the reactive obsta-
cle avoidance behavior 1s modified to use some global
information viz. the goal position.

We also adapt the angular range during a traverse.
The basic observation is that small angular errors when
the robot is far away from the goal lead to large po-
sition errors later. To avoid this we keep the angular
range limits (within which no reorientation is neces-

2The legged robot also has balancing and gaiting behaviors
at a lower level. They are discussed elsewhere [8]

sary) small when the robot is far away from the goal.
These limits are progressively increased as the robot
nears the goal.

The experiments were performed in a simulated
Mars terrain comprised of a crushed red brick sand
mixture. The mixture was spread evenly in a 3.5 m by
3.5 m sandbox to a depth of 0.25 m. The sandbox was
populated with rocks of varying size (between 0.04 m
and 0.2 m in diameter) to simulate Martian rock dis-
tributions. The density of the rocks was equal to the
Mars nominal density from the Moore distribution [6].

Since the evaluation functions use probability esti-
mates from numerous mission trials, the experimental
protocol consists of many robot traverses from start to
goal locations in different instantiations of Mars nomi-
nal terrain. There are three main loops. During a par-
ticular instantiation a number of trials are performed
with different start and goal locations. During the
course of each of these trials (as the robot is navigating
from start to goal) the offboard computer is monitor-
ing time. When a certain time interval d; is reached
the overhead vision system images the robot and the
image is stored with a timestamp. When the current
trial is over the sequence of images taken is postpro-
cessed to extract the (z,y) location of the robot as a
function of elapsed time. This information is stored
in a file and the next trial begins. The procedure is
terminated when all the exemplar start/goal locations
have been used in every exemplar terrain. The proto-
col for energy is exactly the same as the time trials but
instead of monitoring the time elapsed, the power draw
is monitored. Using this a running total of the energy
consumed 1s maintained. When the energy consump-
tion reaches a threshold 4, the robot is imaged.

Once the data recording the position and orientation
of the robot is obtained using the protocol described
above, 1t 1s processed to create plots of the required
probability estimates that yield the previously defined
figures of merit that we are interested in. The data
processing steps for the time trials are as follows:

e Fix a given time resource value (Zp)

e Fix a required minimum displacement (rg)

Build a plot of w(r > rg) vs. ¢

1. for each of the n data sets, Vi < fg compute
r=y/(e—2)? + (y —us)?

2. a = number of r values greater or equal to rg

3. use a/n as the required probability estimate

e Compute nondimensionalized 7 = fotu o () dl



e Repeat above steps for different values of r; and
tg

The data processing steps for the energy trials are
similar. In both outlines above (z;,ys) is the robot
start location and m(r > rg) denotes the probabil-
ity that the displacement r from the start location is
greater than rg.

4 Data Analysis

The experiments were performed in simulation and
with the physical robots. The datasets discussed here
thus contain results from both. We will however re-
strict ourselves to a discussion of the datasets from the
physical robots since space constraints do not allow a
complete discussion here. The interested reader is re-
ferred to [9] for a complete account.

4.1 Mobility Trials
Tradeoff Space

and Clustering in

The first step in calculating the figures of merit is
to calculate the probability of reaching k robot lengths
as functions of time and energy. Since we have multi-
ple trials we estimate this probability as the fraction
of trials in which the displacement was greater than kl
as functions of time and energy consumption. In Fig-
ure 6 the probability of Marscar reaching the threshold
displacement kl is shown for various values of k. The
quantity / is intended to be a measure (with dimen-
sions of length) of the robot size. We use the cube
root of the volume of the smallest rectangular box in
which the robot can be packed. For Marscar [ = 0.35
m. All the trials were done in Mars nominal distri-
butions. One can see a reasonable agreement between
the simulated dataset and the dataset collected from
the physical robot. The simulated dataset consisted of
200 trials and the physical dataset consisted of 40 tri-
als. The probability estimates of the simulated dataset
are smoother compared to the physical dataset due to
the larger sample size. The general behavior of the
family of curves shown in Figure 6 is a monotonic rise
to saturation. The interpretation of these curves is
the likelihood of success (at navigating through the
obstacle field) as a function of the available resource
(time). A higher k value corresponds to a longer tra-
verse and thus involves greater ability in penetrating
obstacle fields. As k is increased for the same robot
the probability of achieving the same degree of success
decreases.

In Figure 7 a family of curves is shown which plot
the probability of Marscar achieving a threshold dis-
placement k! as a function of energy consumed. As in

ir 00000QQRPPREEOEIOOOOOOEOOD +
o +t o9
+ 009Qe®¥ "
N 00000000929+++Q°
o it
o + o Lt
+ o +

P(displacement > kL)
o o
@ o

N
°
N
~
i
~
A
]
> +

o
=
<]
o
+

o
02 o ° + ° + O robot
o + o + +  simulation
0.1t ° +

200 400 600 800 1000 1200
time (s)

Figure 6: Marscar - Probability of reaching threshold
displacements vs. time in Mars nominal terrain
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Figure 7: Marscar - Probability of reaching threshold
displacements vs. energy in Mars nominal terrain

the case of the plots in the previous figure, the prob-
ability of greater success shows an asymptotic rise to
saturation. Figure 7 shows the probability estimates
for the simulated as well as physical datasets. As one
can see there is a good match between the two. As
in the previous case larger k values imply longer mis-
sions and thus are harder to achieve for the same value
of the energy resource. Performance degrades as k is
increased. Asin the time trials with Marscar, the phys-
ical datasets in Figure 7 are the result of 40 trials and
the simulated datasets are the result of 200 trials.

In order to compute the figures of merit for MENO
in Mars nominal terrain we follow the same data anal-
ysis procedure as before. The curves showing the plots
of the probabilities of achieving the threshold displace-
ment kl as a function of time elapsed are shown in
Figure 8. As in the previous cases increasing values of
k signify longer missions. For MENO [ = 0.47 m. The
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Figure 9: MENO - Probability of reaching threshold
displacements vs. energy in Mars nominal terrain

physical datasets shown in Figure 8 were computed us-
ing 40 trials in Mars nominal terrain and the simulated
datasets were generated using 200 trials in simulation.

The last datasets of interest in the current series
are the behavior of MENO as a function of the energy
consumed in Mars nominal terrain. The relevant plots
are shown in Figure 9.

In the notation of Chapter 4 we now have plots of
mr1(t) and g (e); the probabilities of the achieving cer-
tain threshold displacements as functions of time and
energy. Using 1o = 40 min and eq = 200 kJ as repre-
sentative numbers for the mission under study we cal-
culate the two figures of merit using Equations 1 and
2 for different values of k. These values are shown in
Table 1.

Figure 10 shows the 7 and 5 values for the two robots
in the tradeoff space. The lower left hand side of the
plot (signifying lower evaluation scores) is the space oc-
cupied by the legged robot. The wheeled system has
better scores on both time and energy axes. The eval-

Table 1: The Figures of Merit for MENO and Marscar
for Different Traverse Lengths

k  Marscar | MENO

T 7 T n
2 147 11504 2.7 6911
4 12.1 11429 2.1 5957
6 9.4 9718 1.1 3609
8 7.3 9635 0.8 2745
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Figure 10: A Comparison of MENO and Marscar in
Mars Nominal terrain for Different values of &

uation functions are evaluated for 4 different values of
k. Irrespective of the k value the wheeled robot out-
performs the legged robot. The functions # and 7 thus
partition the design space.

To illustrate the cause of the difference in the eval-
uation scores it is useful to re-examine Figures 6 and
7 on the same scale. This is done in Figure 11 where
we show the probability estimates for both MENO and
Marscar with & = 5 as a function of the time elapsed.
Seen on the same axis it is obvious that the wheeled
system does better with the ’area under the curve’ met-
ric since it 1s a lot faster than the legged system in this
terrain (the Mars nominal rock distribution).

If Figures 8 and 9 are plotted on the same axis a
similar conclusion can be drawn regarding the energy
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scores. This is shown (again for & = 5) in Figure 12.
The wheeled robot needs far less energy to cover the
same distance compared to the energy consumption of
the legged robot over a similar distance for this partic-
ular rock distribution.

4.2 Sensitivity Studies - Environment

One of the objectives of this study was to measure
the effects of changes in environmental parameters on
the mobility metrics. The environment model used in
this study is the distribution of rocks called the Moore
distribution. In the vicinity of a previous mission to
Mars (the Viking II mission) the density of rocks is
much higher than the Mars nominal distribution used
thus far. The effect of terrain clutter is very clearly seen
in the two metrics. In the case of both robots, increased
clutter leads to performance degradation. However it is
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Figure 13: MENO and Marscar mobility in Viking II
(cluttered) terrain for different values of k

interesting to note that the wheeled system is affected
far more than the legged system. This is largely due to
the fact that the increased clutter leads to significantly
longer paths for the wheeled system whereas the legged
system is able to go over many more obstacles and even
though it 1s slower its performance is comparable to the
legged robot. This is shown in Figure 13.

As one can see in Figure 13 the Marscar cluster
moves dramatically to the left and down when the
terrain was changed from Mars nominal to Viking II.
MENO performance also suffered as seen in Figure 13
but not as dramatically. For this environment, its en-
ergy figure of merit is better than Marscar.

4.3 Scalarization of the Metrics

The metrics 7 and 1 can be combined into a sin-
gle scalar metric using a weighted linear combination.
From the data presented in this Chapter we see that
the wheeled robot outperforms the legged vehicle along
both dimensions in Mars nominal terrain. The scalar-
ization chosen should preserve this ordering. A stan-
dard technique is to use a weighting function which is
either linear or quadratic and maximize the combina-
tion of the two metrics. However the problem of how
to choose the weights still remains. Instead of an ad
hoc solution we use domain knowledge to postulate a
feasible scalarization technique.



On one axis () we are measuring the robot’s ability
to use time effectively and on the other (1) we measure
effective energy utilization. The fundamental unit of
conversion between them is the maximum power deliv-
ered by the onboard power source. If the power source
is capable of delivering o« W then we weight energy and
time in the ratio 1 : «.

We computed the scalarized scores for k = 6 for the
different cases reported in this Chapter using oy = 30,
ay = 40 and asz = 50. Using this scalarization tech-
nique it is clearer that in sparse obstacle distributions
the legged system should be the preferred design while
in dense obstacle distributions (such as the Viking II
site) the nominal configuration of the legged robot
MENO is the better design using these metrics and
this particular linear scalarization.

5 Discussion

Values of the two metrics, 7 and 5 for Marscar are
significantly superior to the MENO values. The effect
of obstacle clutter; though, is more pronounced on the
wheeled robot.

There are three interesting aspects of the data pre-
sented here which form the basis for substantial fu-
ture research. The first deals with the following design
question: “In what parts of the design space are good
designs found 7”. At first glance it may seem like the
answer 1s obvious - by definition 1t would seem like the
designs leading to the highest values of the evaluation
functions are the good parts of the design space. How-
ever, a closer look suggests that the real ’sweet spots’
in the design space are those where the design is in-
sensitive to changes in the environment. For example,
MENO in its nominal configuration is insensitive to
changes in rock density. If there is large variability in
the expected terrain density it may be a better decision
to pick a design like MENO even though it has low eval-
uation scores compared to other designs. We are thus
led to believe that future scalarization efforts should
include weighted contributions from select components
of the evaluation gradient in addition to the values of
the evaluation functions themselves.

The second interesting point also concerns the eval-
uation gradient. Locations in the design space where
the evaluation gradient becomes very large also pro-
vide interesting insight into design methodology. We
suggest that these locations in the design space sig-
nal a ’breakdown’ in the current kinematic design and
a discrete jump to a new structure is indicated (with
higher articulation perhaps or with a larger number of
wheels).

A third application of the metrics proposed here is
to global optimization. While the technique for extrap-
olating performance shown here 1s local, it is possible
to extend it by instantiating a chain of local models
and following the evaluation gradient to an optimal set
of parameter values.
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Search Graph Formation for Minimizing
the Complexity of Planning
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Abstract

A large number of path planning problems are solved
by the use of graph based search algorithms. There
are a variety of techniques available to optimize the
search within these graphs as well as thorough studies
of the complexity involved in searching through them.
However, little effort has been dedicated to construct-
ing the graphs so that the results of searching will be
optimized.

The commonly used approach for the evaluation of
complezity assumes that the complezity of a path plan-
ner can be evaluated by the number of nodes in the
graph. However, in many path planning problems (es-
pecially in complex, dynamic environments) the evalu-
ation of the cost of traversing edges is the major culprit
of computational complexity. In this paper we will as-
sume that the complexity associated with the computa-
tion of cost of traversing an edge is significantly larger
than the overhead of searching through the graph. This
assumption creates non-trivial complexity results that
allows to optimize the creation of the graph based on
the computational power available.

We will present a numerical evaluation of several
graph creation algorithms including the commonly used
four and eight connected grid. Different scenarios for
which ground truth is available are explored. Compar-
ison among the graph creation algorithms reveals se-
rious downfalls that are common practice throughout
the literature.

1 Introduction

Planning can be defined as the process of finding
the steps necessary to bring a system from an initial
(current) state to a final (desired) state. Most plan-
ning techniques represent the planning problem in a
graph G(V, E). Where V is a set of vertices, and E
is a binary relation on V [6, 7, 9]. The elements of
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the set V are called vertices and represent states. The
elements of the set E are called edges and represent
the ability of the system to move from one state to
another. In planning graphs, the edges are ordered or
unordered pairs of vertices, (v;,v;) where v; € V' and
v; € V. A walk is an alternating sequence of vertices
and edges, a trail is a walk with distinct edges, and a
path is a trail with distinct vertices.

When solving a planning problem, we must find
a path or plan from a starting vertex v, to an end-
ing vertex v, while minimizing a cost function C' =
Zi w;; where w;; is the cost of traversing the edge
(vs,v5). Some planning problems can be solved by al-
gorithms with polynomial complexity. Unfortunately,
these tractable set of problems covers only a few of the
relevant problems encountered in path planning. Most
problems, however, can only be solved by polynomial
algorithms on non deterministic machines, ie N P. For
a thorough study on the problem of tractability and
its taxonomy see [8].

One very useful tool when fighting the computa-
tional complexity of planning is the creation of hier-
archies of planners. The Real-time Control System
(RCS) reference model architecture is one such archi-
tecture and it has been successfully applied to multi-
ple diverse systems [1, 3]. The target systems for RCS
are in general, complex control problems. Although it
has been shown [2, 10] that the complexity of a control
problem is reduced by the use of a hierarchical control
system, the reduction of error as a function of com-
plexity at one level of the hierarchy has been mostly
overlooked.

The complexity of search algorithms inside a graph
has been thoroughly studied [11, 13, 14]. However,
with few exceptions [4, 12], little attention has been
paid on how the graph should be built with some ex-
ceptions [4, 12]. In most cases, it is recommended that
the graph for search on “empty space” should be built
using grids, Voronoi diagrams, or visibility graphs. It
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Figure 1: Average error for a 4 connected grid.

is not clear from the literature which of these methods
should be used and when. Moreover, in most cases the
complexity of algorithms is calculated solely based on
the number of vertices in the graph. In most path
planning problems, the computational complexity of
calculating the cost of the edges is orders of magnitude
higher than the actual time spent searching through
the graph once these values have been calculated.

2 Numerical Exploration of Graph Cre-

ation

In order to compare the different graph formation
algorithms, we started by defining a simple test sce-
nario. The analytical closed form evaluation of the
complexity of finding the optimum path taking under
consideration the placement of the vertices in the so-
lution space becomes easily intractable. Therefore, we
decided to study the problem numerically. In the ex-
periments presented in this paper, simple Euclidean
distances were used to calculate the cost of travers-
ing the edges. The advantage of using this measure
is that we have ground truth. We assumed that the
Euclidean distance is calculated with an accuracy of
five significant figures.

2.1 Grid Based Graphs

By far, the most commonly used graph for search
in planning algorithms is the four-connected square
grid. In this kind of graph, the vertices are placed at
regular intervals and it is assumed that each vertex
is connected to four (or eight) of its closest neighbors.
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Figure 2: Average error for a 8 connected grid.
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Figure 3: Average distance to the mean.



We built a two dimensional four-connected square grid
with a random number of vertices. We repeated this
experiment several times. Figure 1 shows log(error)
where error is defined as

error = abs(ds,e — ((Z diit1) +dsp, +dew,)) (1)

s is a randomly selected starting point, e is a randomly
selected ending point, v, is the closest vertex in the
graph to e, v is the closest vertex in the graph to s,
d(i,7) is the Euclidean distance between two points.
Please note that this cost function may underestimate
the real error of traversing the planned graph as it is
assuming that d, ,, and d. ., are Euclidean. This is a
best case scenario.

The summation in the equation represents the added

cost of the optimal path through the graph. The av-
erage error (marked with a black star in the Figure)
is kept constant as the number of edges is changed.
The different values at a particular number of edges
correspond to the different number of times that the
experiment was performed using different e and s.

Figure 2 shows the error function shown in 1 ap-
plied to a eight-connected grid. As expected, the er-
ror function settles at a lower error. By comparing
the 4-connected grid to the 8-connected grid we can
appreciate that the average error decreases with the
higher connectivity, however in both cases, the error
quickly settles to a constant value.

Please note that in both cases, increasing the num-
ber of edges, and therefore increasing the computa-
tional complexity gives us very modest improvements
of the final cost. Another problem found experimen-
tally with the 4 and 8 connected grids using this cost
function is that there are many paths that have ex-
actly the optimal cost. This has the effect that the
optimal path that the algorithm will choose, may wan-
der off the “expected” straight path line from e to s.
In other words, many paths within the parallelogram
defined by vs and v, have exactly the same “optimal”
cost. Another effect that results from square grids is
that the error varies significantly depending on the di-
rection of travel. A numerical evaluation of this devi-
ation can be appreciated by examining Figure 3. The
large average distance to the mean is due to the fact
that some s and e happened to be horizontal or verti-
cal, therefore giving small error, while some created a
very costly stair-step paths through the graph.

2.2 Shaking the Grid

Some of the pitfalls of the grid based graphs can be
avoided by:

1. Shaking the vertices within the grid. In other
words, building a square grid, adding a random
displacement to the vertices, and finally connect-
ing all the vertices that are within a neighbor-
hood. The size of the neighborhood dictates the
vertices to edges ratio. This has two effects:

(a) Break the ties among optimal paths so that
only one path is found to be optimal. This
is very helpful in re-planning systems as it
forces to commit instead of randomly flip-
ping among the set of “optimal” paths.

(b) Create a more uniformly distributed set of
vertices where all “ directionalities” are rep-
resented.

2. Create higher connectivity rates (higher than in
the 8-connected grid).

Figure 4 through Figure 7 shows the results of a
set of experiments run using the above principles. To
compute these figures, the vertices of the grid are
placed first in a grid pattern where each point is [
apart from its closest neighbor. Next, a random vec-
tor is added to each vertex of maximum amplitude 3!.
All vertices within a distance threshold are then con-
nected. By varying the connection threshold, different
ratios between the number of nodes and the number
of edges are achieved. We can see from Figure 4 that
the error decreases as the number of edges increases,
approaching the 10e-5 mark set by the 5 significant
figures used to calculate the Euclidean distances. Fig-
ure 5 shows a top view of the same numerically found
error. We can see that even a simple Euclidean cost
function creates ripple effects in the final cost.

If we take the assumption that the computational
complexity is directly proportional to the number of
edges (as it is in most cases), we can see in Figure
8 the error function as a function of the number of
nodes. The almost counter-intuitive results can be
explained from the fact that by increasing the number
of vertices the average cost of an edge decreases. In
Figure 9 we assumed that we could only calculate the
cost of 40000 edges. By visual inspection of Figure
9 we can determine that the least error is given by
about 2000 vertices, and therefore creating a graph
where each vertex has 20 connected neighbors.

3 Vehicle Planner Example

In order to validate the above rules of thumb, sev-
eral experiments were conducted using the Demo III
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Vehicle Level Planner [5]. In these experiments, a
four-connected graph and a shaken graph of the form
of section 2.2 were run using a complex world model
and cost function. The four-connected graph had a
grid size of 8 meters with 61012 connections and the
shaken graph had a grid size of 11 meters with 45086
connections (26% fewer connections) and was shaken
45.5 meters. The world model contained a priori in-
formation on the NIST grounds at 4 meter resolution
including the locations of wooded areas, buildings,
roads, and fences. It should be noted that the world
model resolution is twice that of the four-connected

graph and almost three times that of the highly-connected

graph.

In the Demo III Vehicle Level Planner, the planning
module passes path segment endpoints (the vertices of
the planning graph) to the world model for evaluation.
The world model simulates driving a straight line path
(the edges of the planning graph) between these end
points and returns the cost of traversal to the plan-
ner. The planner then conducts an optimal search
algorithm to find the cheapest path (in reference to
the cost function used by the world model). The cost
function used by the world model favored paths that
avoided roads and buildings, and drove next to, but
not in wooded areas combined with the time of traver-
sal of the route (assumed uniform vehicle velocity over
the route segment).

The straight line segments used by the world model
may cause plan failures when the resolution of the
planning graph is less then that of the world model.



This occurs when a very narrow low-cost corridor is
surrounded by a very high cost area. It may occur
that there are no straight line segments at the graph
resolution that traverse this low-cost corridor. This
phenomenon can be avoided in the highly-connected
graph by adding additional vertices in these high pay-
off areas. This approach was not taken in the experi-
ments described below.

Using this planning system, we found that the highly-
connected graph performed as much as 27% better
then the four-connected graph, even though it used
26% fewer connections. Sample output paths may be
seen in Figure 10 for the four-connected graph and
Figure 11 for the highly-connected graph. A snap-shot
of the world model may be seen as the background of
these images. As one would expect, the benefit of us-
ing the highly-connected graph is directly tied to the
shape of the optimal path. For straight paths, the two
graphs performed on par with each other. For paths
which required many turns, the highly-connected graph
significantly outperformed the four-connected graph.

4 Conclusion

e “Optimal” paths found using the four-connected
grid based graph are in general, directionally bi-
ased, favoring the traversal of the space in cer-
tain directions and not in others. They also
create symmetries that result in noncommittal
paths. Shaken grids and high connectivity be-
tween vertices was shown numerically to improve
these pitfalls.

e The number of edges in the graph and their
cost evaluation are in most cases, the major cul-
prit for computational complexity. Therefore, it
is recommended that the graph design process
starts by determining the number of edges that
can be evaluated, and then selecting the number
of vertices that give the least error.

e Numerical evaluation of the error are in most
cases the only way to select parameters for the
formation of search graphs in complex environ-
ments. Most analytical evaluations of the com-
plexity in the literature make the assumption
that the burden of computational complexity is
in the “opening” of the vertices in the search
graph, and are not readily applicable to plan-
ning problems.
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ABSTRACT

Theintelligence of a network of agentsisreflected in the
complexity of missions that can be accomplished, the
degree of coordination/cooperation among the agents, and
the level of uncertainty the system can tolerate and still
accomplish its missions. The networked system must be
able to evaluate a situation, devise an appropriate
response, and act accordingly. Metrics must be devised
to capture the complexity and surprises of the real world,
and to capture the system’s need to reason about its
situation so as to uncover unanticipated problems and
opportunities. Inputs for developing autonomous
capability specifications (and thus metrics of interest)
include (1) descriptions of expected missions, (2) the
space of mission parameters, and (3) the cost/benefitratio
for operational concepts. These inputs come from both
current and anticipated missions. Several of our recent
projects have sought to quantify operational metrics for
autonomous ground, air and undersea vehicles. This
paper presents our approach to high-level design of
autonomous vehicles that produces the three inputs for
metric development. The approach and parameter spaces
areillustrated with examples derived from several vehicle
projects.

Keywords. metrics, intelligence quotient, intelligent
systems, autonomous systems, collaborative systems,
situation awareness, planning under uncertainty, orders of
intelligence.

1 INTRODUCTION

The intelligence of a network of agents is a complex
characteristic that can be quantified and measured in a
wide variety of ways. Our work on the design of
intelligent autonomous vehicles and programs to develop
such vehicles has made clear that the type of metric we
develop will be chosen to meet a particular objective. For
instance, commercial sponsorswill likely optimize some
functionality, while researchers may try to optimize some
measure of “pure’ intelligence. After reviewing a
number of systemsin ground, air and undersea domains,
it becomes clear that the mgjor characteristics of
intelligence for any complex set of vehicles are the broad

! Copyright 2000 The Charles Stark Draper Laboratory, Inc.

areas of multi-vehicle collaboration, understanding the
world they operate in (situation awareness) and
responding appropriately (planning under uncertainty).
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To guide the design of intelligent vehicles for particular
domains, we have used the processillustrated in Figure 1.
There are two major efforts shown — the left column
focuses on the missions the vehicle is intended to
accomplish, while the right column focuses on the
technologies required to accomplish those missions. The
two columns could be loosely labeled requirements pull
and technology push, respectively. The areas we have
considered for metric analysis to date are those shown
surrounded with dotted lines. Once thorough descriptions
of the vehicles missions are developed, those are
reviewed to extract parameters that affect performance.
The mission descriptions are then extended to probe the
space of the identified parameters. This process is
illustrated in detail in Section 2.

A more humanly intuitive representation of the parameter
space was sought, since the bare listing of parameters can
be daunting (Section 3). This introduces significant
subjectivity, but allows aspects of intelligence to be
clustered that seem to lead to strong collaborative
systems.

Section 4 discusses an attempt to quantize intelligence
into “orders’ of intelligence. It beginswith the point that




“intelligence” is still arelatively undefined area, needing
substantial work in the component technologiesand in the
development of appropriate metrics.  Despite that
reservation, candidate levels of intelligence capability are
described that might serve as an |1Q for autonomous
systems.

Costs are another aspect of intelligence that require
attention and metrics (Section 5). For instance, a sponsor
may seek to develop a comprehensive technology
roadmap that will determine what technologies need
investment to meet a particular set of system and
operational requirements.

The paper concludes with a brief discussion of some
future directions for our work (section 6) and a summary
(section 7).

2 CONSTRUCTION OF PARAMETER SPACE

The simplest way to evaluate a system’'s success or
failure at itstask is often binary — did it accomplish some
goa? For instance, in RoboCup Soccer [3] as in human
games, a single score is the final arbiter of success.
However, the single score does not capture the
complexity of the domain or of the team’s approach to
various elements of the problem. Thus additional
“scores’ are developed that rate game players on the
skills that contribute to the final game score. Such more
detailed scores can be combined into a single weighted
score, using multi-objective optimization techniques
[1,2]. However, that requires significant work to
determine appropriate weightings and combination
techniques.

The first step toward such a development is to flesh out
the parameter space of the task. A large number of
factors can be considered in a thorough anaysis of a
collaborative group of vehicles. We use the three
characteristic areas named above (collaboration, situation
awvareness, and planning under uncertainty). The
following incompl ete listsindicate some of the important
elements for robots facing dangerous situations (military
or other). Each metric on the list requires a range of
acceptable values and a weighting factor for combining
them with other components. The factors can then be
processed to produce acombined metricif such ascoreis
desired.

Multi-vehicle collaboration factors
- number of interacting agents
degree of coordination/cooperation among the
agents
degree of improvement in situation awareness
due to multiple vehicles
success of dynamic replanning to maintain
configuration for communication
Situation awar eness

amount of complexity and surprise of real world

captured

number of elements

level of interactions between elements

dynamism

model complexity for target identification

observability

environmental challenge

+ clear air/daylight — to — storms at night

+ desert (al is visible) — to — mountainous
(hard to see details)

+ textured (landmarks differ) — to — desert/no
texture

threat types

+ from known type/location— to— suspected —
to — unknown till aggression

+ fromid is straightforward (e.g., surface-to-
ar-missile (SAM) radar) - to -
difficult/uncertain  (visual or synthetic
aperture radar (SAR), near friendlies,
signature similar to neutral or friendly

neutrals

+ known typellocation — to - threats
masguerading as neutrals

friendlies

+ known type/location — to — identify-friend-
foe (IFF) transponders off/broken or known
but near threats

navigation

+ sensorsfunctioning and low uncertainty — to
— sensors dropping out/damaged or high
uncertainty

vehicle state (including equipage)

+ sophistication of health monitoring and
reconfiguration

time to sense and assimilate (separate from time

to plan)

+ enough time — to — insufficient time due to
tempo or number of targets (so need to
prioritize sensing and assimilation)

can successfully identify atarget

can detect environmental changes of the

following types:

+ threats
+ terrain
+ collision

+ targets of opportunity

Decision making and executing under uncertainty

extent that system reasons about its situation
+ uncovers unanticipated problems

+ uncovers opportunities

level of uncertainty the system can tolerate
performs under available time to plan



dynamic time constant that system can reason

within

stochasticity - number of contingencies handled
by system

number of decisions (i.e., size of planning
problem)

quality of plan generation / selection algorithms
quality of planning approach (algorithms and
representations)

complexity of mission / problem

complexity of controllable system

number of plan elementsin flux simultaneously
number of levelsin planning problem

ability to perform dynamic replanning due to:
+ changein mission objectives
+ environmental change detected

Such alist of parameters is daunting, and only becomes
more difficult to grasp and synthesize as the level of
detail grows. A more intuitive representation was sought
to support analysis of the trade-offs involved in system
design and funding. The result is discussed in the
following section.

Systems
1. eyes on wall with teleoperated camera direction
2. Micro Air Vehicle or helicopter with visual mapping

3. bat

4. vision augmented navigator/mapper without own mobility (e.g.,
n spy briefcase)

5. RC helicopter beyond line of sight (pilot has only the view from

on-board cam)
6. smart intrusion sensor alarm (SISA)

7. agenerd intelligence in a human invalid

8. mosaicking visual mapper (creating 3d mosaicked map) and visual
servoing to navigate with respect to map

9. DARPA' sautonomous submarine project (Autonomous Mapping
and Minehunting Technologies)

10. UGV with flow-based OD/OA + feature-assisted retrotraverse,
and run and hide

integrate multiple actions
get to waypoint, do one feature-based command

integrated multi-sensor
fusion n
@ 10
5| (0
single-sensor &g
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Figure 2 -- Three-Dimensional | ntelligence Space

3 GRAPHICAL PARAMETER SPACE

A three-dimensional graphical approach was used to
illustrate where various systems and system designs fell
in the overall parameter space (Figure 2). This shows a
particular three axes in the parameter space, recognizing
that the whole estimation and metrics space is highly

multi-dimensional. Several such charts were prepared,

but no canonical axes were identified that best serve all

analysis purposesfor all autonomous systems. Thefigure
shows axes of situation awareness, mobility, and task

planning as creating a 3D intelligence space. A variety of
autonomous and non-autonomous systemsareincluded in
the figure to highlight key parts of the resulting space.



The representation’s key weakness is inherent in the
choice of any set of 3 dimensions— key information from
a fuller, higher-dimensional space is lost. Also
problematic is the apparent linearity between ticks along
any axis — what conclusions can be drawn by systems
shown N ticks apart? Still, there is the strong sense that
this captures something fundamental and accurate about
theintelligence present in avariety of compared systems.
The primary difficulty with this approach, however,
remains the subjective judgement that only a small
number of axesis enough to grasp the entire intelligence
space.

4 AN INTELLIGENCE QUOTIENT?

We have been asked at various junctures to provide
metrics for autonomous systems development, in a
similar vein to those provided by (for instance) engineers
working in other disciplines who do not hesitate to
propose metrics. That has been a difficult request to
answer, until the various exercises reported above led us
to a key conclusion: Mature technologies can support
more precise performance targets than immature
technologies. For instance, a group researching
automatic target recognition (ATR) can aim to decrease
thefalse alarm rate by 5%. However, what similar metric
applies to the broader aim of “increase intelligent
autonomy” ?

This section discusses a reservation about characterizing
intelligence, then proposes levels of capability that are
our best-yet “intelligence quotient” for autonomous
systems.

4.1 A Philosophical Reservation

Answering the above question may depend on how the
guestion is phrased, but consider this goa: enable
autonomous dynamic mission replanning, based on
discovered targets and conditions expected in the target
area, while out of communication with the human
operator.  Severa questions spring to mind. What
technologies apply? What are their margins for
improvement? Do we even know what is necessary to
achieve the goal? One approach is to consider finer-
grained technologies rather than the broad term of
“autonomy”. For instance, the following appear more
susceptible to metrification.

Decrease route planning time-to-plan by 20% given
contingencies of type A.

Increase  ATR  reliability  for
target/environment pairs by 10%.
Increase Situation recognition  capability by
increasing contingency representation flexibility by
10 times.

particular

We conclude that “intelligent autonomy” is an immature
“technology” that is actually a composition of underlying
technologies, all of varying maturities. A small set of
examples of component technologies with clear
deficiencies (compared to human-level capabilities)
follows.

Sensor data interpretation
Situation awareness and assessment
Communication

Efficient — perhaps better named “data

communication” (bandwidth, rates, etc)

Effective — perhaps better named “knowledge

communication” (content, concepts,

transparency of thought processes)
Knowledge representation — know, represent and
share:
- What data toward what gods in what
timeframes?

Why does datum A or set of data B matter?

Timeliness of concern

+ Damage is expected to occur by time T
(e.g., hostile strike group detected headed
for barrier)

+ Unless used by time T, data C not useful
(eg, a moving surface-to-air-missile
launcher is detected 1 mile from bunker
moving 10 mph - must use information
within 6 minutes)

Relatedness of data

Collaboration
+ Understand others’ goals
+ Infer intent from observed behavior

Thus finding ways to divide intelligence and autonomy
into appropriate sub-technologies that can be weighed
and combined properly is a critical problem facing this
effort. Lacking such a reliable analysis tool, we next
consider one way to approach its formulation.

4.2 Ordersof Intelligence

Given the above reservation, let us proceed to
characterize intelligence by asking: how hard is a
planning and execution problem? Time to plan (TTP)
depends on the size of the planning problem, but Moore's
Law will reduce TTP significantly by increasing the
feasible size of planning problems. However, TTP aso
depends on (a) the planning approach (algorithms and
representations) and (b) the problem complexity. Size of
the problem is the easiest to provide metrics for. The
other two factors are used to modulate the metrics. If a
planning agent is only concerned with a certain time
horizon (e.g., 10 milliseconds, 1 hour, 1 day), the level of
detail it considers is similarly bounded. Thus planning



problems can be of similar sizes whether at the level of a
single vehicle or afleet of vehicles.

There are numerous planning approaches. For well-
characterized and well-formulated domains, search in a
pre-defined state space is satisfactory. For other
problems, current pure research effots are unable to
provide a well-defined solution. More pragmatically,
planning and execution systems can use a variety of
hybrid approaches, the integration of which pose at least
engineering issues.

Problem complexity addresses characteristics beyond the
simple size of the problem. The characteristics that make
planning, estimation and control difficult include the
following elements.  Since planning needs to be
concerned with what can be expected to occur, it must be
concerned with expected results from estimation and
control, that are affected by the following elements.

observability — the degree of hidden state (in
controlled system or in situation being monitored)
complexity of the controllable system. E.g., number
and type of actuators, static and dynamic stability of
the vehicle.
situation awareness complexity. E.g.:
- number of elements
interactions between elements
dynamism (e.g., likelihood to loose lock in
tracking subsystem)
model complexity for target identification (e.g.,
2D image templates, 3D shape, functional
analysis based on shape, behavioral)
degree to which situation awareness (SA) fulfills
expectations
number of interacting agents. Especialy if multiple
agents are simultaneoudly planning
number of plan elements in flux simultaneously.
E.g., (@) isplanin place before SA isreceived, or (b)
is SA being integrated while plan using it is being
created? Regarding example (a) consider the plan
“go to area X and find tanks’ (where “tanks’ will be
bound to those found by SA), whereas for (b)
consider what the system needs to do when it finds
itself unexpectedly under attack from unknown
guarters.
number of levels in planning problem due to (i)
number of elements, (ii) number of time horizons,
etc.
One approach to creating metrics for these problemsisto
classify problemsfrom the domain into nominal orders of
difficulty, then set targets for various demonstrations
which move along the spectrum of difficulty. For
instance, reasonable goals might be created by aiming to
solve aproblem in 1 second in each demo year, where the
size and complexity of the problem increases over time.
Based on the nominal characterization below of levels of

difficulty, the solvable problem size coul d increase from
10°in demo 1 (say year 2), to 10" in demo 2 (year 4), and
10% in demo 3 (year 6). Thisfoldstogether the expected
advances in processor speed and capacity embodied in
Moore's Law with improvements in planning approaches
resulting from pure and applied research progress. Table
1 captures this approach and leaves space for additional
metrics at various levels of maturity.

10° 10" 10° 10°
Demo 1 || 1 second
(TTPO)
Demo 2 1 second
(TTPL)
Demo 3 1 second
(TTP2)
Beyond 1
second
(TTP3)

Tablel -- Problem Size, and Plan for Increasing
Demonstrable Complexity

4.3 Nominal candidate orders of intelligence

The following lists indicate relative order of magnitude
capabilities that could be grouped together to assess the
maturity of asystem’sintelligence. Theseareillustrative,
not final. Order O activities may exist in preliminary
commercial research forms or may need applied research
and engineering to be fielded. Higher order activities are
believed to be beyond the current state of the art.

Order 0 activities:

Single vehicle plans including (a) multi-waypoint
path planning and execution cognizant of known
threats, (b) obstacle avoidance given some warning,
(c) deck landing inrelatively benign environment
Multiple vehicle plans, for non-interacting vehicles
Plan to search area of regard (AOR) for target, where
AOR is essentidly flat and open, and target can be
found by template matching.

Re-plan communication relay service due to
disruption of channel, using prior known assets.
Re-plan  for  changed  objective,  where
accomplishment of the objectiveisin the futurefrom
the current time-horizon.

Re-plan task particulars due to change in SA. E.g.,
arrive in kill box and discover that the targets to be
hit are tanks instead of a column of trucks.

identify targets of opportunity based on their
appearance

Order 1 activities:

single vehicle obstacle avoidance given less warning
and/or more constraints on response (e.g., in



confined drspace due to terrain or other vehicles,
near vehicle limits for responsiveness)

single vehicle deck landing in moderate sea state
and/or moderate visibility

Plan to act as autonomous communication relay
between moving communication partners, where the
partners are moving in ways that are expected to
disrupt communication within foreseeable future.
Thus plan must include a plan to identify and involve
additional communication relays. Alternative
contingencies would include planning for disruptions
that might occur due to weather, jamming, or other
hostile activity.

Re-plan  for  changed  objective,  where
accomplishment is within current time-horizon,
requiring current SA to be integrated while planning
isunderway using the being-acquired SA.

identify targets of opportunity based on their
appearance where (e.g.) detection depends on sensor
angle, so vehicle must do more extensive search to
cover the space of AOR-cross-sensor-attitude. E.g.,
tanks at edge of forest need to be sensed from the
open side. Vehicle should understand the constraints
(not just fly more lanes of a survey pattern).
multi-vehicle plansfor interacting vehicles

strike group flight plan through waypoints and
around known threats

re-plan task goals due to change in SA. E.g., while
on wild weasel mission switch to coordinated multi-
vehicle SAM attack.

Order 2 activities:

single vehicle deck landing in high sea state and/or
low visibility and/or high and gusty winds
coordinated obstacle avoidance for a strike group
flying very close together

Order 3 activities:

identify targets of opportunity based on their
behavior (from prior planning/SA need model of

behavior and identification of behavior based on
model)

These characterizations build on those detailed in Section
2 — as vehicles increase their ranking in the Orders of
Intelligence, they exhibit more capability in the parameter
spaces. For example, consider the multi-vehicle
collaboration factor of degree of coordination /
cooperation among the agents. The Order 0 system
includes multiple vehicle plans for non interacting
vehicles. This could include an system that distributesthe
team goals among the individual agents for separate
completion. The Order 1 system includes a higher level
capability in this area of multi-vehicle plans for
i nteracting vehicles. Here agents can communicateto one
another when they fail or if they are able to take on an
increased set of tasks. The Order 2 system increases the
requirements on coordination and cooperation to
coordinated obstacle avoidancefor a strike group flying
very close together. The system will be required to share
situation awareness information and plan coordinated
responses at very short time constants.

5 METRICSFOR COSTS

To create aplan for funding toward a goal, an assessment
must be made of the state of the technology against the
require capabilities. Figure 3 shows such an assessment.
It was constructed by asking technology experts to
determine the state of maturity of their technologies for
solving various parts of avehicle's parameter space. The
colorsindicate technological maturity levels:

red pure research needed (6.1)
yellow applied research needed (6.2)
green ready for engineering (6.3)
blank  not applicable

Although this is not a measure of intelligence per se, it
supports analyses leading to the construction of
intelligence vehicles and groups of vehicles.

Figure 3 -- Technology Roadmap (partial).
Columnsaretechnologiesconsider ed appropriatefor addressingthedomain, whilerowsareelementsof thevehicle's
parameter space.
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The notional charts in Figure 4 illustrate how required
capabilities can be mapped against mission descriptions
of current and future operations, to help determine which
are more valued, and to help determine which are
expected to be more expensive. Formal methods for such
cost projectionswould be very helpful.

6 FUTURE DIRECTIONS

Substantial work has been done in applying valuations to
multi-attribute (multi-criteria) problems. Besides a
number of good textbooks (e.g., [1,2]), various techniques
have been formalized to assist in this process. Weintend
to extend the work reported here by investigating and

applying forma tools to the domain characteristics
discussed above.

7 SUMMARY

The intelligence of an autonomous vehicle is a complex
multi-dimensional characteristic evaluated in a wide
variety of dynamic situations, for which no obvious
algorithmic measures exist. Several attempts to analyze
system complexity and intelligence have been presented
in this paper that are drawn from work done for recent
and current projects working toward intelligent
autonomous vehicles. These analyses have sought to
uncover the collaboration, planning and situationa
avareness challenges facing an autonomous vehicle in
difficult conditions, to assist engineers and sponsors in
focusing project efforts. Although the analyses reported
here have been useful first steps toward the significantly
complex vehiclesimagined, morework isclearly required
before intelligence and intelligent systems can be
automatically analyzed and measured.
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Abstract

Mobila agents are powerful, A mobile agent can travel
on the Internet, perform rtasks, amd report fo its owner
the achievement. Mohile agepi techniques are used in F-
commetce, distribited applications, distance learning, and
athers, However, il is hard tofind a strategic meihod, which
tells how mobile agents should behave on the Internet. In
this paper, we propose such a mechanism. Based one the
concepts of Food Web, one of the laws thal we mav learn
from the natural besides neural networks and genetic al
gorithms, we propose a thevretical computation model for
mabile agent evolufion or fhe Inferaet. Ve define an agent
niche overlap graph and agent evolution states. We also
propose & set of algorithms, which is used in our mnlume-
dia search programs, to similate agent cvolution. Agents
are cloned to live on a remote host station based on three
different strategies: the bruie force strategy, ihe sewi-brute
force strategy, and the selective sitalegy. Fvaliations of dif
ferent sirategies are discussed. (uidelines of writing mebile
agent programs are propcsed. The technique can be used jn
distributed information retrieval which allows the compita-
tion load fo be added to servers, but significantly reduces
the traffic of network communicaiion.

1 Introduction

Mobile agents are software programs that can travel
over the Internet. Mobile search agents find the infor-
mation specified by its original query user on a spe-
cific station, and send back search resalts lo the nger.
Only queries and results are transmitted over the Ip-
termet. Thus, unnecessary fransmssion is avoided. In
other words, mohile agent computing distributes comn-
putation loads among netwaorked stations and reduces
network traffic.

The enviranment where mobile agents Yve is the Tn.
ternet. Agents are distributed automatically or semi-
agtomatically via gome conumunication paths, There-
fore, agenis mect cach other on the Internel. Agents

have the same goal can share information and co-
operate, However, if the system resource (e.g., net-
work bandwidth or disk storage of a station) is insuffi-
cient, agents compete with each other. ‘These phenowm-
ena are similar to those in the ccosystem of the rea
world. A creature is born with a goal to live and re-
produce. ‘lo defense their natural ensinies, creafures
of the same species cooperate. Howsver, in a pertur-
balion in ecosystems, creatures compete wilth or even
kill each other. The natural world has built a law of
halance. Food web {or food chain} embeds the law of
creature evolutinn With the growing popularity of In-
ternei where mohile agents live, It is our goal to learn
from the natural to propose an agent evolution com-
puting maodel over the Intermet. The model, even it is
applied only in the mobile agent evolution discussed in
this paper, can be generalized to solve other computer
scienice problems. For mstance, the search problems in
distributed Artificial Intelligence, network traffic con.
trol. or any compulation that involves a large amount
of concurrent/distributed compntation. In general, an
application of our Food Web cvelution maodal should
have the following properties:

¢ The application must contain a wwinher of concurrent
evenla.

¢ Fvents can be simulated by some processes, which cau
he partitioned into a namber of gronps according o
the proporties of events,

o Thers mmst exists some consumer-praoducer relakion-
ships amongz gronps 2o that dependencies can be deter-
mined.

& The numher of processes must he large cnough.

For instance, with the growing popularily of Inter.
net, Weh based documentation are retricved via sorme
search engine. Search processes can be conducted as
several concurrent evenis distributed among Internet
stations. These search evemts of the sarve kind (e.g..
pursuing the same document) can be formied in a gronp.
Within these agent gronps, search agems can provide
informalion {o cach olher. Censidening the amount
of Web sites in the futuve, the gquantity of concyrrent
scarch cvents 15 reasonably large.

302



We have surveyed articles in the area of mobile
agents. personal agents, and intelligent agents. The
related works are discussed in section 2. Some termi-
nologies and definitions are given in section 3. where we
atso introduce the detail concepts of ageni. commimnica-
tion network. In our model, an agent evolves based on
stale transitions, which are ajso discnssed. A graph the-
oretical model describes agent dependencies and com-
petitions is also given. Agent evolution computling al-
gorithms are addressed in section 4. And finally, we
discuss our conclusions in section 5.

2 Related Works

The concept of mobile agent 1s discussed in several ar-
ticles [3, 4]. Ageut Tel, a mobile-agent system pro-
viding navigation and cornmmnication services, security
mechanisms, and debugging and iracking lools, is pro-
posed m [1]. The syslem allows agent programs move
transparcntly hetween comaputers. A software tech-
nology called ‘[elescripl. with safery and security fea
tures, is discussed in {7]. The mobile agent architec-
ture, MAGNA, and its platform are presentad in [3].
Another agent infrastructure is implamented to support
mobile agents [4]. A mohile agent techuique to achieve
load balancing in telecommunications networks 15 pro-
posed in [6]. The mobile agent programs discussed can
travel among network nodes to suggest routes for het-
ter communications. Mobile serviee agent techniques
and the corresponding architectural principles as well
as requirements of a distributed agent envirampend are
discussed in 2]

3 Definitions

Agents communicate with each other since they can
help each other. For instance, agenis share the same
search query should be able to pass query results to each
other so that redundani. computation can be avoided.
An Agent Conununication Network {ACUN) serves this
purpose. Each node in an ACN represents an agent on
a computer network node, and each link represents a
logical computer network connection (or an agent com-
munication link). Since agents of the same goal want
to pass results to each other, agenl communication rela-
tions can he deseribed in a complete graph. Therefore,
an ACN of agenis hold different goals is a graph of com-
plete graphs. Since agents can have multiple goals {e.g.,
searching based on mulliple criteria), an agent may be-
long to difficrent complete graphs.

We define somea terminologies used in this paper. A
host station {or station) is a networked worksiation op
which agents live. A query station is a station where

a user releases a query for achieving a set of goals. A
station can hold multiple agents. Similarly, an agent
can pursue multiple goals. Aa agent society (or soci-
ety) i a set of agents fully connected by a complete
graph, with a common goal associated with each ageni
in the society. A goal belongs to different, agents may
have different priorities. An agent society with a com
mou goil of the same priority is called a spectes. Since
an agent imay have mulliple goals, it is possible that
two or more socletics {or species] have ntersections. A
communication cut set s a set of agents helong 1o two
distinet agent societies, which share comnion agents,
The removing of all elements of a conimunication cut
set reaults in the acparation of the two dislined soci-
ctics. An agent in a cormunication cut set is called
an articulation agent. Since agent socicties (or species)
are represented by complete graphs and these graphs
have colammnication cit sers as interseclions, articula-
tion agents can be used to suggest a shottest network
vath between a query station and the stalion where an
agent finds its goal. Apother point is thal an articu-
lation agent can hold a repository, which contains the
network communication statuses of links of an agent
sociely. Therefore, network resource can be evaluated
when an agent checks its surviving exviroimnent to de-
cide its evolution policy.

Au agenl evolves. 1L can reacl fo an eavitonmend,
respond ta another agent. and cammunicaie with other
agents. The evolution process of an agent involves some
internal states. An agent is in one of the following states
after it is born and before it is killed or dies of natural:

s Searching: the agent is searching for a goal

* Sugpending: the agent is waiting for enough resource
in 1ts suvironmont 1n order to search far its goal

s Daugling: the agent loses itz goal ol surviving. it is
walting for a new goal

o Mutating: the agent is changed to a new species with
a new goal and a possible new host station

An agent is bomn to a searching state to search for
its goal {i.e.. information of some kind). All creatures
must have goals (c.g.. scarch for food). However, if ifs
surviving savironment {1Le., a host station) covtains no
enough resource, the agent may transfor to a suspend-
ing state (i.e., hibernation of a creature). The search-
ing process will be resmned when the environment has
better resources. But, if the environment is lack of re-
sources hadly (i.e., natural disesters occur), the agent
might be killed. When an agent finds its goal, the agent
will pass the search results to other agents of the same
kind {or same society). Other agents will abort their
search (since the goal is achieved) and rransfer to a
dangling state. An agent in a dangling state can not.
survive for a long time. It will die after some days
{(ie., a duration of sime}. O, it will be re-assigied to
a new goal with o possible new host station, which isa
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new destination where the agent should travel. In this
case, the agent is in a mutating state and s reboru to
search for the new goal. Agent evolution states keep the
gtatus of an agent. Th order to maintain the activity of
agenis, i a digtriboted compating enviroinment, we use
message passing as a mechanisi to copirol agent state
trausitions.

Agents can suspend /resume or even kill each other,
We need a general policy to decide which agent i killed.
By our definition, a species is a set of agents of the same
goal with a same priority. It is the priority of o goal we
base on to discriminate 1wo or more species.

We nteed to construct a direct graph which represents
the dependency between specics. We call this digraph
an spectes food web (or food web). Each node in the
graph represents a species. All species of a connected
food web (i.c., a graph component of the food weh) are
of the same goal with possibly different. pricritias. We
asgume that, different users at different host statjons
may issue the same query with different priority. Each
dirccted cdge in the food web has an origin represents a
species of & higher goal priority and has a terminus with
a lower priority. Since an agent (and thus a spectes)
can have multiple goals which could be similar to other
agents, each goal of an articalation agent should have
an associated food web. Therefore, the food web is nsed
as a competition base of agents of the same goal in the
same station.

Each tood web describes goal priority dependencies
of species. Form a food web, we can further derive
an niche overlap graph. Tn an ecosystem, two or more
species have an ecological niche overlap (or niche over-
fap} if and only U they are competing Tor the saie re-
source. A niche overlap graph can he used to repre-
sent the competition among species. The niche overiap
graph i used in our algorithm o decide agent evolution
policy and to cstimate the effect when certain factors
are changed in an agenl commmunicalion network. Based
on the piche overlap graph, the algorithm is able to sug-
gest strategies 1o re-arrange policies so thal agents can
achieve their highest performanpce efficiency. This con-
cept is similar to the natural process thar recover from
perturbations in ecosystems.

4 Agent Evolution Computing

The algorithms proposed in this section use the agent
evolution states and the nmiche overlap graphs discussed
for agent evolution computing. An agent wanfs to
search for its goal. Afthe sametime, since the searching
pracess is distribited, an agent wants to find a destina-
Lion station to clone itsell. Searching and cloning are
essentiajly exist as a co-routing relation. A co-rouline
can be a pair of processes. While ane process serves as

a producer, another serves as a consumer. When the
consumer uses out ol the resource, the consumer is sus-
pended. After that, the producer is acitvaied and pro-
duces the resource until it reaches an upper limii. The
praducer is snspended and the consumer is resimed,
In the compuiation maedel, the searching process can
be a comswner, which need new destinations to proceed
search. On the other hand, the cloning process 5 a
producer who provides new URlbs.

Agent cvolution on the agent comnrmunication net-
work 1s an asynchronous computation. Agents live on
difterant (or the sarne) stations communicate and work
with each other via agent messages. The searching and
the cloning processes of an agent may run as a co-
routine on a station. However, different agenis are run
on the same or separated stations concurrently. We use
a formal specification approach to describe the logic of
our ovoluilon computation. Formal specifications use
first order logic, which is precise. In this paper, we use
the Z specification tanguage to describe the model and
algorithms.

Each algarithm or global variable in our discussion
has two parfs. The expressions above a hovizontal line
are the signatures of predicares, finctious, or the data
types of variables, Predicates and functions are con-
structed using quantifiers, logic operators. and other
predicatos (or funciions). The signature of a predieate
also indicate the type of its formal parameters. For
instance, Agent » Gool » Host_Station are the types
of Tormal parameters of predicaic 4gent. Search. The
body. as the second part of the predicate, is specified
below the horizontal line.

We use some global variables through the formal
specification.  The variable goni_archicred is seb to
TRUE when the search goal is achieved., FALSE oth-
erwizc. We also use two watermark variables, & and g,
where o 1s the basgie systom resource requirement and
# is the minimal requirement. Note that, o must be
greater than 2 so that different levels of treatment are
used when the resouree is not sufficient..

Global Variables and Constants

‘ goal_achicved © Goal A chicoed
oar AFEAL
2 REAL

Algorithm Agent_Search is the starting point of agent
evolution simulation, If system resource moects a basic
requurenment (e &), the algorithm activates an agent
in ihe searching state wilbin a local siation. If the
search process finds its goal (c.g., the requested in-
formation is found), ihe goal is achieved. Goal abor-
tion of all agents in a society resulis in a dangling
state of all agents in the same society (including the
agent who finds the goal). At the same time, the
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search result is sent back to the original yuery sta-
tion via Query_Relurn_T7RL. Suppose that the goal
can not be achicved in an individual staiion, the agent
is cloned in ancther sration (agent propagation}. The
Agent_Clone algorithm is then uwsed. On the other
hand, the agent may be snspended or even killed if the
system resource % below the basic requirement (ie.,
Resource. Avatlable{A, G, X) < «). In this case. algo-
rithms Ageni_Suspend is used if the resource available
18 still feasible for a future resuming of the agent. Oih-
erwise, if the resource is helow the minimal requirement,
algorithm Ageni. Kl is used.

Agent Searching Algorithun

Agent_Search : Agent x Goal x Host_Station

Y A: Agent, 7 : Goal. X 1+ Hast_Stution e
Agent_Search{A, &, X) &
Besovrce_Avatlable( 4, G, X1 > u =
[C € Local_Search(A,X )=
Abort LAHLA T Agent_Socicty] A
send_result{ X . ['RT.,
. Query_Return_[VRT) A
goal _achievsd = TRIE
VG & Local_Search{A, X) =
Agent_Clone{ A, 4,
A7 Agend_Saciety)]
v Resowrce_Avadable{ A, G, X > 3=
Agent_Suspend{ A (7 X
v Besource. Available( A, G, X < 3 =
Agent_Kil{A, G X}

Agent cloning is achieved hy the Agent_(lone algo-
rithm. When the clouing process wants 1o find new
stations io broadeasl an agent, two implementafions
can be considered. The first 1s to collect all URLs
of stations found by one search engme. But, consid-
ering the network resource available. the implementa-
tion may check for the common URIs found by wwo
or more search engines. New URIs are collecred by
the Seerch_For_Stations algoriihm, which 13 invoked in
the agent cloning algorithm. Agent propagation stral-
egy decides the computation efficiency of cur madel. In
this research, we propose Lhree strategies:

® the brute force agent distribution
e the semi-brute force agent distribution, and

o the selective agent distribation,

‘The first sirategy simply clone an agent on & remote
station, if the potential station contains information
that hetps the agent to achieve ths goal. The serni-brute
force strategy, however, finds another agent on a poten-
tial station, and assigns the goal to that agent. The se-
lective approach not only try to find a uscful agent, but
also check for the poals of that agent. Cloning strate-
gies affect the size of agent sccleties thus the efficiency
of computation.

Agent Cloning Algorithm: the Brute Force
Strategy

Agent Clore 1 Agent > Good % Agent_Sociely

VA Agent, O Coal. 5 Agent_Sucicty »
Agent_Clone(A, ¢, 5) &
[¥ X : Host_Statien »
X & Search_For. Stetions (7=
(F4": Agent o 4" = copy(A) A

S:SU{A'};’\
Agent_Search( A, G, X))

v [Search_For_Stotions{G) = B =
goul achiceed = FA LIFE]

The brute foree agent distribution strategy makes a
copy of agent A, using the copy function, in all staiions
returned by the Search_ For_Stetions algorithm. Agent
sel in each stalion 8 updaled and the sociely & where
agent. A belongs is changed. Agent A’, a clone of agent,
A is transmitied to station X for execution,

Apent Cloning Algorithm: the Semi-brute

Foree Strategy

Agent_Clone : Agent x Godd = Agent_Soctety

YA Agent, (7 Gaal 5 1 Agent_Society e
Agent._Clone{A, G, St &
[¥ A Host Station s
X € Search. For.Stations{ 3] =
(34" Agent o A" € X . Agent_Set =
(4. Gonl_Set = A’ Goal_Fel
{1a
S=su{Ad' A
Agent_Searchi 4", G. X))
v {Search_For_Stations{ ) = B =
goal_achicved = FALSE}

The semi-hrate force agent distribution approach is
similar to the hrte force approach, except that it does
not make a copy of the agent but give the goal 1o an
agent on ita destination station. The agent which ae-
cepts this new goal (i.e., A') is aclivated for the new
goal in its belonging station.

Agent Cloning Algorithm: the Selective

Strategy
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Agent_Clonc © Agenl x Goal ® Agent_Sceicly

Y A: Agent {7 (Foal, 5 : Agent_Society »
Agent _Clone{ A, (7,5} &
¥ X : Host_ Station e
X € SearchoFor_Stations(G) =
BFA: Agente A ¢ X. Ageni Sel =
[G € A Goul_Sct =
8= S A T Agent _Society
v G ¢ A’ Goul_Set =
(A" Goal_Set =
AL Goal_Set U{ G }
AS=SU{ A}
A Agent_Search{ A’ G, X7
WX Agent_ Set = 8 =
[3AY: Agent o A = copy(A) A
X Agent_Set={ A" } A
S=85uUqA" A
Agent_Search{A". 7, X1]]
v {Search_For_Stations{ G} = @
= goal_gchieved = FALSE]

The last approach is more complicale. Lhe selective
approach of cloning algerithm must check whether there
is another agent in the destination station (le., X). If
so, the algorithro checks whether the agent (ie., 4') at
that station shares the same goal with the agent to be
cloned. If two agents share the same goal, there s no
nced of cloning another copy of agent. Basically, the
goal can be computed by the agent at the destination
station. In this case, the union of the two societies s
necessary (i.e., § = SuU A" | Ageni_Seciety). On the
other hand, if the two agents do not have a cornmon
goal, to save romputation resource, we may ask the
agent at the destination station to help searching for
an additional goal. This case malkes a re-organization
of the society where the source agent belongs. The
result. also ensure thai the nimber of agenis on the
ACHN is kept in a minimum, Whether the iwo agents
share the same goal, the Agent_Search algorithm is used
to search for the goal again. In this case, Agent A’
is physically transmitted to station X for execution,
When there is 5o agent running on the destination sta-
tion, we need 1o increase the number of agents on the
ACN by duplicating sn agent on the destination sta-
tion (i.e. the invocation of A% = copy(A})). The soci-
ety is reorganized. And the Ageni_Search algorithm is
called again. In the acse that no new gtation is found
by the Scarch_For_Stafions algorithm, the goal is not
achieved.

The agent search and agent clone algorithms use
somc auxiliary algorithms, which arc discussed as fol-
lows. The justification of system rescurce available de-
pends on agenl pobey, as delined n A Policy. Agenl
policy is a set of factors indicated by name tags (e.g.,
NETWORK _BOUIND). The estimation of resources is
represented a8 a real number, which is computed based
on X .Resource of station X. Note that, in the algo-
rithm, wl and w2 are weights of factors {wl + w2 =

1.0). Wz only deseribes some cases of using agent poli-
cies. Other cases are possible but amitted. Moreover,
we copgider the priority of goal &, I the priority is
lower than some watermark {i.e.. (7. Priorify < @}, we
let r1 be a constant less than 1.0, Therefore, resonrces
are reserved for other agents. On the other hand, if
the priority is high, we consider the value returned by
Resource_ A railable should be high. Thus the potential
agent can proceed ils computation unmediately. The
values of 8 and w depend on agent applications.

Auxiliary Algorithms

flesonrce_Available : Agent x Goal x {lost_Station —
RIEAL

¥ Agent G Goal, X Host_Station 1 : REALw
HJwl, w2 rl.r2: REALe
Rrsource Avetlable(A. G X1 =R =
[NETWORK _BOUND € 4. Policy =
R = X . Resource. Network
v CPI_BQUND € A Policy =
R = X Regource OFPIf
v MEMORY _BOUND € 4 Policy =
H = X . Reaource. Hemory
v GCPU_BOUND € A Policy A
MEMORY _BOUND € A Policy=
R = X. Resource. DPU + wl4
X Resource Memory = w2 A
wl L2 14
Vol
A 38, w: Priovity e
[ Priovity < 8 =
(E=Rxrinsl <10}
V(7. Priovity > w o=
(R=R+r2 Ar2> 0}

The above algorithins describe how an agent evolves
from a state 1o another. How agents affect each other
depends on the system resource avallable. Howcever,
in an ACN, it is possible that agents suspend or even
kill cach other, as we described in previous sections.
The niche overtap graphs of each goal play an impor-
tant role. We use the Agent Suspend and Ageat Kl
algorithms to take the niche overlap graphs of a goal
{ie., riche_compete{{s)) into consideration. In the
Ageni_Suspend algorithrn, if there exists a geal that lhias
a lower priority comparing (o Lie goal of the searching
agent, a suspead pessage Is senl Lo the goal w delay ils
search (ie., via suspend((Z' 1 Agent}). The searching
agent may he resumed after that sinee systemn resources
may be released from those goal suspension. In the
Agent Kill algorithm, however, o kill message is sent
instead (i.e.. via {erminate{ G’ | Agent)). The system
tesoutce is checked against the minimum requirement
#. T resuming is feasible, the Ageni_Search algorithm
in invoked. Otherwise, the system should terminate the
searching agent.
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Agent_Suspend : Agent x Goal x Host _Station

¥4 : Agent, (7 : (Foal, X  Host_Station &
Agent _Suspend(A, 3, X &
IG5 Goal_Set e
GS = niche_compete( ()
ANG : Gosla GV GS A
G Priority < & Priority =
suspend{ ' T Agent))
A (Resource_Awveileble(d. G, XV 2 § =
Agent_Search(A (2, X)
v Hesource Available{ A, G, X\ < # =
sudpend{4))

YA: Agent, 7 Gond, X : Hos_Station e
Agent _Kill{A, G, X) &
G5 : Gogl Set o
G = niche_compete( |
ANGE  Gosle G'e G5 A
&' Priority < (7. Priovity =
terminate( ;' 1 Agent))
A {Resource_Aveilable(A. G, X} > 3 =
Agent Search{4. G, X}
V Resource_Available(A G, X)) < 8=
terminaie{ A))

The other auxiliary algorithms are refatively less com-
plicated. Function Lecal_Search takes as input an agent
and a station. I returus a set of goals found by the
agent in that station. A matek predicate is nsed. Thie
match predicate is application dependent. Tt could be
a search program which locates a key word in a Web

page, of a request of information from a user (e.g.. a

survey queslionnaire). The Abori_All predicale iakes
as input an agent sociery and terminates all agents
within that society. The Search_For_Statrons funetion
takes as imput a goal and returns a set of host sta-
tions. The stations should be selectrd depending on the
candidale_stalion function, which estimates the possi-
bility of goal achievernent in a station. This function
can he implemented as a Weh search engine which loolks
for candidate T'RF.s. We have ominted some detailed
definitions of the above auxiliary algorithms, as well as
some primitive functions which are selfexplanalory.

Local_Scarch : Agont x Host_Station - Goal_Sect

¥4 Agent, X 1 Host_Station, (35 : Gowl_Sct e
Focal. Senmh(A, X ] = 35 &
GS ={ G: Goal | & € A Goal_Set A
match{ G. Query,
X. Rosource. Information) }

Abort_All 1 Ageni_Sociely
¥ 5 : Ageni_Socicty e
Abort_AN(S) &
YA Agente A€ 5= terminate{ 4)

Srearch.For_Stations : Gogl — P Host_Stution

Y (7 (foal. X _Sei : P Host_Station »
Search. For_ Stations{ (@)= X . 5ot &
X bet == { X : Host_Station |
candidots_station( G, X} }

5 Conclusions

Mobile agent. based sofiware enginecring is interest-
ing. However, in the literature, we did nol. find any
other simnilar theoretical approach to model what mo-
bile agents should act on the Internet, especially how
mobile agents can cooperate and compete. A theoret-
ical compatation model for ageat evolution was pro-
posed n this paper. Algorithms for the realization of
our model wete also given,
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